首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic digestion is an effective technology to convert cellulosic wastes to methane and hydrogen. Heat-treatment is a well known method to inhibit hydrogen-consuming bacteria in using anaerobic mixed cultures for seeding. This study aims to investigate the effects of heat-treatment temperature and time on activated sludge for fermentative hydrogen production from alpha-cellulose by response surface methodology. Hydrogen and methane production was evaluated based on the production rate and yield (the ability of converting cellulose into hydrogen and methane) with heat-treated sludge as the seed at various temperatures (60-97 degrees C) and times (20-60 min). Batch experiments were conducted at 55 degrees C and initial pH of 8.0. The results indicate that hydrogen and methane production yields peaked at 4.3 mmol H2/g cellulose and 11.6 mmol CH4/g cellulose using the seed activated sludge that was thermally treated at 60 degrees C for 40 min. These parameter values are higher than those of no-treatment seed (HY 3.6 mmol H2/g cellulose and MY 10.4 mmol CH4/g cellulose). The maximum hydrogen production rate of 26.0 mmol H2/L/d and methane production rate of 23.2 mmol CH4/L/d were obtained for the seed activated sludge that was thermally treated at 70 degrees C for 50 min and 60 degrees C for 40 min, respectively.  相似文献   

2.
Implementation of an in-mill biological treatment plant is one solution to the problems associated with closure of whitewater systems. It is, however, important to operate the treatment with low concentration of nutrients in the effluent. The effect on the COD reduction from decreased additions of NH4-N and PO4-P were investigated in three parallel aerobic suspended carrier reactors during treatment at 46 to 48 degrees C of whitewater from a recycled paper mill producing liner and fluting. In the reference reactor, a COD reduction of 89% was achieved and 45.6 mg NH4-N/(g COD reduced) and 11.6 mg PO4-P/(g COD reduced) was consumed at an organic load around 20 kg COD/(m3 x d). Reduced additions of NH4-N decreased the COD reduction. Addition of 56% of the consumption of NH4-N in the reference reactor resulted in a COD reduction of 80%. The response from decreased addition of PO4-P was different compared to NH4-N but it could not be determined if this is due to unsuitable experimental design or a different reaction mechanism. Reducing the addition of PO4-P to 26% of the consumption of PO4-P in the reference reactor, decreased the COD reduction to 83%. The main conclusion from the experiment is: biological treatment has the potential of treating whitewater from recycled paper mills with low effluent nutrient concentrations.  相似文献   

3.
This paper presents a comparison of dry anaerobic digestion reactors fed with differently sorted municipal organic solid wastes. One reactor was fed with source sorted organic wastes and a second reactor was fed with mixed organic wastes consisting of grey wastes, mechanically selected municipal solid wastes and sludge. The two reactors utilised the same process (Valorga) and operational conditions at full scale. The results of the study emphasise the influence of the kind of treated material on the process performances, especially in terms of biogas and methane production, thus, energy reclamation. The reactor treating the source sorted organic waste and the reactor treating the mixed organic wastes generated some 200 m3 and 60 m3 of biogas per ton of waste treated, respectively, while the specific methane production was some 0.40 and 0.13 m3CH4/kgTVS, respectively. The mass balance and the final fate of the digested material from the two reactors were also clearly different. As for the costs, these were some 29 Euro per ton of treated waste (50% for personnel) and 53 Euro/ton for disposing of the rejected materials. Incomes were some 100 Euro/ton (on average) and an other 15 Euro/ton came from green certificates. The initial investment was 16 million Euros.  相似文献   

4.
Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.  相似文献   

5.
This paper describes changes in effluent quality occurring before and after an upgrade to the Bolivar Wastewater Treatment Plant in South Australia. Trickling filters (TF) were replaced with an activated sludge (AS) plant, prior to tertiary treatment using waste stabilisation ponds (WSPs). The water quality in the WSPs following the upgrade was significantly improved. Reductions in total and soluble BOD, COD, TKN, suspended solids and organic nitrogen were recorded and the predominant form of inorganic nitrogen changed from NH(4)-N to NO(2)/NO(3)-N. The reduction in ammonium and potentially toxic free ammonia removed a control upon the growth of zooplankton, which may have contributed to decreases in algal biomass in the final ponds and consequently lower dissolved oxygen. Additionally, changes in inorganic nitrogen speciation contributed to a slightly elevated pH which reduced numbers of faecal coliforms in WSPs. The AS pretreated influent recorded significantly lower inorganic molar N:P ratio (10-4:1) compared to those fed with TF effluent (17-13:1). Algae within the WSPs may now be nitrogen limited, a condition which may favour the growth of nitrogen-fixing cyanobacteria. The decrease in algal biomass and in dissolved oxygen levels may enhance sedimentary denitrification, further driving the system towards nitrogen limitation.  相似文献   

6.
Electrochemical oxidation was applied to treat the effluent from bioreactor landfill with leachate recirculation, characterised as poor biodegradability and high NH3-N concentration. In this study, the effluent was electrolysed in a batch reactor with Ti/TiO2-IrO2-RuO2 anode and stainless steel cathode. The oxidation of dissolved organic matter (DOM) during electrolysis was evaluated based on the evolution of molecular weight grade, hydrophilic fractionation (humic acid, fulvic acid and hydrophilic fractions), specific ultraviolet absorbance (SUVA254) and AOX. The impact of the initial NH3-N concentration on the oxidation was discussed. The results showed that at a current density of 100 mA/cm2, electrolysis time of 1.5 h and electrode gap of 1 cm, NH3-N with an initial concentration of 1.2 g/L could be completely eliminated and 56% of COD with an initial concentration of 1.2 g/L could be removed, which illustrated that the electrolysis-produced chlorine preferentially oxidised ammonia. The electrolysis mainly resulted in the degradation of humic substances and other high molecular DOM, followed by the increase of BOD/COD ratio and decline of SUVA254 of the leachate. The current efficiencies for COD and ammonia oxidation gradually decreased during the electrolysis, with the latter obviously higher than the former. At the optimal electrolysis time of 1.5 h, NH3-N could be totally removed and the BOD/COD ratio could be enhanced to 0.3, which was also favourable to control the AOX at a reasonable level.  相似文献   

7.
为探寻污水厂二级出水深度处理方法,以阜新市某污水处理公司二级出水为研究对象,进行H2O2与沸石联用去除水中COD、氨氮的研究。结果表明:在二氧化锰的催化作用下,pH值为7时,H2O2和沸石的投加量分别为1.5mL和2g,二级出水的COD从138.24mg/L降到52.76mg/L,去除率达到75.36%,NH3-N从20mg/L降到5mg/L,去除率为74.59%,出水有机物和氨氮含量达到国家相关出水标准。  相似文献   

8.
Fruit and vegetable waste (FVW) was co-digested with first stage (FSS) and second stage anaerobic digester sludge (SSS) separately, over the course of 10 days, in batch reactors. Addition of FVW significantly increased the methane production in both sludges. After 10 days of digestion FSS + FVW produced 514 ± 57 L CH(4) kg VS(-1)(added) compared with 392 ± 16 L CH(4) for the SSS + FVW. The increased methane yield was most likely due to the higher inoculum substrate ratio of the FSS. The final VS and COD contents of the sewer sludge and FVW mixtures were not significantly different from the control values suggesting that all of the FVW added was degraded within 10 days. It is recommended that FVW be added to the first stage of the anaerobic digester in order to maximize methane generation.  相似文献   

9.
The return flows of reject water from sewage sludge dewatering alter the activated sludge process in a conventional WWTP and increase TN concentration in the final effluent from WWTP. The objective of the investigation carried out was to consider the application of multistage treatment wetland (MTW) for the treatment of reject water from sewage sludge dewatering in a centrifuge (RWC). This paper aims to present the design and performance of each stage of the treatment as well as the efficiency of total MTW. The full scale pilot plant for RWC, consisting of two vertical flow beds (SS VF) working in series, followed by an horizontal flow bed (SS HF), was built in 2008. The applied configuration ensured a very high removal efficiency of principal pollutant (COD - 76.0% and NH4+-N - 93.6%). In the investigated facilities, the SS VF beds ensured an effective removal of nitrogen compounds, especially NH4+-N, whereas the decomposition of hardly degradable Org-N and COD took place in SS HF. This research illustrates that the MTW could be successfully applied for the treatment of RWC.  相似文献   

10.
The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.  相似文献   

11.
The combined ADEPT (Anaerobic Digestion Elutriated Phased Treatment)- SHARON (Single reactor system High Ammonium Removal Over Nitrite)--ANAMMOX (Anaerobic Ammonium Oxidation) processes were operated for the purpose of resource recovery and nitrogen removal from slurry-type piggery waste. The ADEPT operated at acidogenic loading rates of 3.95 gSCOD/L-day, the SCOD elutriation rate and acid production rate were 5.3 gSCOD/L-day and 3.3 gVFAs(as COD)/L-day, respectively. VS reduction and SCOD reduction by hydrolysis were 13% and 0.19 gSCOD(prod.)/gVS(feeding), respectively. Also, the acid production rate was 0.80 gVFAs/gSCOD(production). In the methanogenic reactor, the gas production rate and methane content were 2.8 L/day (0.3 m3CH4/kgCOD(removal)STP) and 77%, respectively. With these operating condition, the removal of nitrogen and phosphorus were 94.1% as NH4-N (86.5% as TKN) and 87.3% as T-P, respectively.  相似文献   

12.
In order to develop a new type of anaerobic digestion process equipped with a nitrogen removal function, denitrification of nitrate nitrogen (NO3-N) in anaerobic acidogenesis of organic fraction of municipal waste (OFMSW) was investigated by two semi-continuous reactors. Reactor 1 and Reactor 2 were fed by 3% and 7% of solids concentration of synthetic garbage, respectively. Generation of nitrogen gas (N2) and ammonium nitrogen (NH4-N) was simultaneously observed in the low load of nitrate (NO3-N) (below 0.68 g NO3-N/L). In Reactor 1, ammonium nitrogen generation decreased as the addition of nitrate increased. Finally, the increase of the addition of nitrate resulted in the increase of acetic acid production.  相似文献   

13.
The paper reports the results of an investigation carried out at lab scale to assess the effectiveness of an innovative technology (SUPERBIO) for treating municipal and/or industrial wastewater. When this technology was applied for treating municipal wastewater, the results showed that even at maximum organic load (i.e. 7 kg COD m(-3) d(-1)), the COD in the treated effluent was lower than 50 mg L(-1). In addition, both ammonia and TKN removal efficiencies resulted in higher than 87% up to an organic load of 5.7 kg COD m(-3) d(-1) corresponding to a nitrogen load of 0.8 kg TKN m(-3) d(-1). Very satisfactory process performances also resulted during tannery wastewater treatment, when a chemical oxidation step (i.e. ozonation) was inserted in the treatment cycle of SUPERBIO. In such an instance, at organic and nitrogen loadings of 3 kgCOD m(-3) d(-1) and 0.20 kg N m(-3) d(-1), COD, NH4+ -N and TSS average removals were 96, 99 and 98%, respectively. Finally, during the whole experimentation, SUPERBIO was always characterised by a very low sludge production. Such a result was ascribed mainly to the characteristics of biomass that grew in the form of very dense granules (i.e. 130 gVSS L(Biomass)(-1) allowing a biomass concentration as high as 50-60 gTSS l(bed)(-1) to be achieved.  相似文献   

14.
In this study, specific methanogenic activity (SMA) test and fluorescence in situ hybridisation (FISH) were respectively used to determine acetoclastic methanogenic capacity, and composition and number of methanogenic and sulphate reducing bacterial (SRB) populations within a full scale anaerobic contact reactor treating a pulp and paper industry effluent. The sludge samples were collected from three different heights along the anaerobic reactor having a difficulty of completely stirring. Performance of the anaerobic reactor in terms of COD removal efficiency varied between 47 and 55% at organic loading rates in a range of 1.6-1.8 kg COD m(-3) d(-1) and methane yield varied between 0.18 and 0.20 m3CH4kg CODrem(-1). The anaerobic reactor was not operated for 2 weeks during the monitoring period. According to SMA test results, potential methane production rate was 276 mLCH4 gVSS(-1) d(-1) before the off period of the reactor, however it decreased to 159 mL CH4 gVSS(-1) d(-1) after this period. SMA test and FISH results along the reactor height showed that the acetoclastic methanogenic activity of the sludge samples, the relative abundance of acetoclastic methanogens, hydrogenotrophic methanogens and acetate oxidising SRB decreased as the reactor height increased, however the relative abundance of non-acetate oxidising SRB increased.  相似文献   

15.
An inventory of agro-food industry organic waste streams with a high potential for biogas transformation was studied in a logistically viable area (Cider Region, Asturias, Spain). Three industries were selected as the most viable ones: livestock, dairy and beverage. The potential for methane production from six wastes (beverage waste, BW; milled apple waste, MA; milk waste, MK; yogurt waste, YG; fats and oils from dairy wastewater treatment, F&O and cattle manure, CM) at five different substrate:inoculum ratios (0.25, 0.50, 0.75, 1.00 and 1.50) was evaluated in laboratory batch assays. Obtained methane yields ranged from 202-549 mL STP CH(4)·g VS waste(-1), and the methane content in biogas ranged from 58-76%. The ultimate practical biochemical methane potentials were slightly affected by the substrate:inoculum ratio. The estimation of the regional fluxes of waste and methane potentials suggests anaerobic digestion as a sustainable solution for the valorization of the organic wastes generated in this Region.  相似文献   

16.
The objective of this research was mesophilic anaerobic digestion of blackwater from vacuum toilets (BW) and kitchen refuse (KR) in a CSTR within an ecological sanitation system. A detailed investigation of the BW characteristics was carried out. Research on anaerobic digestion was performed with CSTR of 101 volume at HRT of 10, 15 and 20 days. The digestion of BW at 20 days HRT showed stable performance without inhibition effects, in spite of relatively high ammonium concentrations. The removal of total and particulate COD was 61% and 53%, respectively, and the methane yield 10/CH4/cap/day. The addition of kitchen refuse (KR) improved the performance of the CSTR in terms of COD removal efficiency and methane yield. At 20 days HRT the removal of total and particulate COD increased up to 71% and 67%, respectively, and the methane yield to 27/CH4/cap/day. The results at 15 days HRT showed similar performance. At HRT of 10 days, the anaerobic treatment was limited but reached steady state conditions at higher VFA concentrations in the effluent, with a decrease of COD removal of 30 to 33% and of methane yields of 19 to 21%.  相似文献   

17.
The anaerobic ammonium removal from a piggery waste with high strength (56 g COD/L and 5 g T-N/L) was investigated using a lab-scale upflow anaerobic sludge bed reactor at a mesophilic condition. Based on the nitrogen and carbon balance in the process, the contribution of autotrophic and heterotrophic organisms was also evaluated in terms of the influent NO2-N/NH4-N ratio (1:0.8 and 1:1.2 for Phase 1 and Phase 2, respectively). The result of this research demonstrates that the anaerobic ammonium removal from the piggery waste, using the UASB reactor, can be performed successfully. Furthermore, it appears that by using granular sludge as the seed biomass, the ANAMMOX reaction can start more quickly. Average nitrogen conversion was 0.59 kg T-N/m3 reactor-day (0.06 kg T-N/kg VSS/day) and 0.66 kg T-N/m3 reactor-day (0.08 kg T-N/kg VSS/day) for Phase 1 and Phase 2. The NO2-N/NH4-N removal ratio by the ANAMMOX was 1.48 and 1.79 for Phase 1 and Phase 2. The higher nitrite contents (about 50%) in the substrate resulted in higher nitrite nitrogen removal by the partial denitritation, as well as the ANAMMOX reaction, implying higher potential of partial denitritation. However, the result reveals that the ANAMMOX reaction was influenced less by the degree of partial denitritation, and the ANAMMOX bacteria did not compete with denitritation bacteria. The colour of the biomass at the bottom of the reactor changed from dark gray to dark red, which was accompanied by an increase in cytochrome content. At the end of the experiment, red-coloured granular sludge with diameter of 1-2 mm at the lower part of the reactor was also observed.  相似文献   

18.
Upflow anaerobic sludge blanket (UASB) methane fermentation treatment of cow manure that was subjected to screw pressing, thermal treatment and subsequent solid-liquid separation was studied. Conducting batch scale tests at temperatures between 140 and 180 degrees C, the optimal temperature for sludge settling and the color suppression was found to be between 160-170 degrees C. UASB treatment was carried out with a supernatant obtained from the thermal treatment at the optimal conditions (170 degrees C for 30 minutes) and polymer-dosed solid-liquid separation. In the UASB treatment with a COD(Cr) loading of 11.7 kg/m3/d and water temperature of 32.2 degrees C, the COD(Cr) level dropped from 16,360 mg/L in raw water to 3,940 mg/L in treated water (COD(Cr), removal rate of 75.9%), and the methane production rate per COD(Cr) was 0.187 Nm3/kg. Using wastewater thermal-treated at the optimal conditions, also a methane fermentation treatment with a continuously stirred tank reactor (CSTR) was conducted (COD(Cr) in raw water: 38,000 mg/L, hydraulic retention time (HRT): 20 days, 35 degrees C). At the COD(Cr) loading of 1.9 kg/m3/d, the methane production rate per COD(Cr), was 0.153 Nm3/kg. This result shows that UASB treatment using thermal pre-treatment provides a COD(Cr), loading of four times or more and a methane production rate of 1.3 times higher than the CSTR treatment.  相似文献   

19.
The anaerobic digestion process is globally applied to the treatment of highly concentrated wastes such as industrial and rural effluents, and sewage sludge. However, it is known to be relatively unstable. When loaded with high concentrations of organic material, unwanted volatile fatty acids (VFA) are often produced rather than methane (CH4) gas which can lead to digester acidification and failure. This study investigated digester behaviour under high loading rates, testing the usefulness of stoichiometric methane conversion efficiency as a digester control parameter at high loading rates. Our results show that, in general, the CH4 production rate was proportional to the feed rate (loading rate). However, at very high loading rates, the CH4 production rate was not proportional to the increase in the feeding rate. Consequently, VFA accumulated and the H2 partial pressure increased. The proportionality of the loading rate and gas production rate is stoichiometrically expressed as the conversion efficiency. We found that conversion efficiency was a useful indicator as an early warning of digester imbalance. The digester remained stable at conversion efficiencies above 75%. Dropping below 70% signified the onset of digester failure. As loading rate and methane production data are readily available on-line in most anaerobic digestion plants, the conversion efficiency can be monitored on-line and used as an efficient control technique to maintain safe operation of anaerobic digesters at high loading rates.  相似文献   

20.
Factors affecting nitrogen removal by nitritation/denitritation.   总被引:4,自引:0,他引:4  
Nitrogen removal from wastewater with high nitrogen concentration and low COD/N ratio via nitrite is advantageous. The specific character of the sludge liquor enables the application of such a method. The factors affecting process efficiency were studied. From the factors followed pH, NH4+/NH3 and NO2-/HNO2 concentration and distribution seem to be most important, using sequencing batch reactor technology and treating wastewater with high NH4+ concentration (above 1 g/l). The efficient oxidation of N-NH4+ to nitrite was achieved at a minimal nitrate production. Primary sludge was used as an internal source of substrate for the denitritation because of the organic substrate deficiency of the sludge liquor. The denitritation can be controlled by dosing of the primary sludge and can be complete. There are two operational alternatives of sludge liquor pretreatment: without pH control--lower operational costs and N-removal up to 65% and with pH control--higher operational costs and N-removal close to complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号