首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose to use a Fabry-Perot interferometer (FPI) as a comb frequency filter to isolate pure rotational Raman spectra (PRRS) of nitrogen molecules. In making the FPI's free spectral range equal to the spectral spacing between the lines of nitrogen PRRS, which are practically equidistant, one obtains a device with a comb transmission function with the same period. However, to match the FPI transmission comb completely with the comb of nitrogen PRRS lines one should tune the wavelength of the radiation used to excite the PRRS of nitrogen exactly to the position of any minimum in the FPI transmission comb. Thus to achieve this task for the case of nitrogen PRRS one must take the FPI's free spectral range Dnu(f)= 4B(N(2)) and the wavelength of the exciting radiation such that (1/lambda(exc)) = 4B(N(2))(k + 1/2), where B(N(2)) is the rotational constant of the nitrogen molecule and k is an arbitrary integer number. In this case all (odd and even) pure rotational Raman lines of nitrogen will pass through the FPI while the line of exciting radiation is being suppressed. Additionally, a FPI cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines.  相似文献   

2.
Abstract

Pure rotational Raman scattering signals from atmospheric gases such as nitrogen and oxygen can be used to deduce the temperature of the atmosphere. Previously, this method has been successfully implemented as a remote temperature sensing lidar system. In this paper, theoretical studies of the method have been carried out using Monte Carlo simulations for different temperature profiles from radio sonde data. The geometry of the lidar as well as the aerosol profiles of the atmosphere can be specifically defined in this method. It is important to understand whether or not multiple scattering will have a significant effect on the accuracy of temperature retrieval from the measured lidar returns. From the exact pure rotational Raman scattering matrix, we have computed the lidar returns of individual Raman lines. We have given the ratios of multiple to single scattering return signals for atmospheres without clouds, with water clouds and with cirrus clouds. The results indicate that the effect of multiple scattering does not give errors to the temperature inversion for typical atmospheric conditions.  相似文献   

3.
提出了一种新的探测对流层低层大气温度的转动拉曼激光雷达方法,通过测量N2和O2的后向散射的纯转动拉曼谱的强度,计算它们的比值来确定大气温度的垂直分布,并对其性能进行了数值模拟。转动拉曼激光雷达的光源是一个调Q的Nd:YAG激光器,经扩束器后输出能量200mJ;采用双光栅单色仪提取所需要的氮气和氧气的转动拉曼谱;接收机采用光电倍增管和双通道光子计数器,量子效率是10%(48000个脉冲累加)。夜晚它对近地面10.2km高度内的探测信噪比在10:1以上,白天它对近地面3.6km高度内的探测信噪比在10:1以上,计算的温度与模拟用的温度真值阔线相差约0.3K。  相似文献   

4.
We have designed a novel rotational Raman and Rayleigh lidar system that incorporates a simple holographic optical element. The hologram simultaneously disperses and focuses the backscattered signal light so that narrow spectral features can be isolated and detected with high efficiency. By measuring the relative strength of several nitrogen rotational Raman lines, we can obtain an accurate temperature of the atmosphere at a given altitude without the need for external calibration. Simultaneous photon counting of the Rayleigh backscatter signal permits temperature measurements at much higher altitudes.  相似文献   

5.
Whiteman DN 《Applied optics》2003,42(15):2571-2592
The essential information required for the analysis of Raman lidar water vapor and aerosol data acquired by use of a single laser wavelength is compiled here and in a companion paper [Appl. Opt. 42, 2593 (2003)]. Various details concerning the evaluation of the lidar equations when Raman scattering is measured are covered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. The full temperature dependence of the Rayleigh-Mie and Raman lidar equations are evaluated by use of a new form of the lidar equation where all the temperature dependence is carried in a single term. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature-dependent effect can reach 10% or more for narrowband Raman water-vapor measurements. Also, the calculation of atmospheric transmission, including the effects of depolarization, is examined carefully. Various formulations of Rayleigh cross-section determination commonly used in the lidar field are compared and reveal differences of as much as 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction with the Raman lidar technique is considered, as are several photon pulse pileup-correction techniques.  相似文献   

6.
Malinka AV  Zege EP 《Applied optics》2004,43(19):3925-3930
We propose a technique for retrieving seawater-backscattering profiles that is based on the joint use of elastic and Raman lidar returns. We suggest using two lidar channels: the Raman channel and the elastic channel with a light frequency equal to a half-sum of initial and Raman-shifted frequencies of the Raman channel. These specific wavelengths provide the same attenuation laws for elastic and Raman signals if absorption and scattering spectra can be approximated by a power law. In particular, seawater supplies such a possibility in the region of 400-500 nm if extremely bioproductive waters are not considered and the chlorophyll absorption peak at 440 nm does not come out of the background of dissolved organic matter absorption. With these specific initial wavelengths, the elastic and Raman lidar returns differ only in the backscattering coefficients. Because the Raman-backscattering coefficient is constant along the profile, the (elastic-to-Raman) ratio of these lidar returns directly produces the profile of the elastic-backscattering coefficient. This technique stays valid even under multiple-scattering conditions, which is of great importance for seawater sounding.  相似文献   

7.
A two-stage Fabry–Perot interferometer (FPI)-based high-spectral-resolution (HSR) Rayleigh temperature lidar technology is proposed that is capable of simultaneously detecting tropospheric temperature and aerosol optical properties with high-precision. The system structure is designed and the measurement principle is analysed. A two-channel integrated FPI used forming a two-stage FPI ensures the relative stability of the two FPI spectrums. The first-stage FPI with high spectral resolution can effectively separate Mie and Rayleigh signals to derive the signal components. Two adjacent-order transmission spectrums of the second-stage FPI are just located in the two wings of Rayleigh–Brillouin (R–B) scattering spectrum to measure temperature. Two multimode polarization insensitive optical circulators used in receiver system can achieve high-efficiency utilization of signals. A narrow linewidth semiconductor laser at 852 nm is used as light source. Using the selected and optimized system parameters, the lidar performance simulation results show that in the sunny weather conditions for 0.15WSr–1 m–2 nm–1 sky brightness, with 0.3 W laser power, a 30 cm diameter telescope, 60 m range resolution and 30 min observation time, the temperature measurement errors are below 0.4 K in night-time and below 1.6 K in daytime; the relative measurement errors of backscatter ratio are below 0.04% in night-time and below 0.13% in daytime respectively up to 6 km height. Compared with the traditional FPI-based HSR technique, the technique we proposed can improve the detection accuracy of temperature by 2.5 times and can also significantly improve the detection accuracy of backscatter ratio.  相似文献   

8.
The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.  相似文献   

9.
The lidar of the Radio Science Center for Space and Atmosphere (RASC; Kyoto, Japan) make use of two pure rotational Raman (MR) signals for both the measurement of the atmospheric temperature profile and the derivation of a temperature-independent Raman reference signal. The latter technique is new and leads to significant smaller measurement uncertainties compared with the commonly used vibrational Raman lidar technique. For the measurement of temperature, particle extinction coefficient, particle backscatter coefficient, and humidity simultaneously, only four lidar signal are needed the elastic Cabannes backscatter signal, two RR signals, and the vibrational Raman water vapor signal. The RASC lidar provides RR signals of unprecedented intensity. Although only 25% of the RR signal intensities can be used with the present data-acquisition electronics, the 1-s -statistical uncertainty of nighttime temperature measurements is lower than for previous systems and is < 1K up to 11-km height for, e.g., a resolution of 500 m and 9 min. In addition, RR measurements in daytime also have become feasible.  相似文献   

10.
Previous investigations have revealed a considerable difference between the spectral behavior of a molecule in a pure substance and that in a mixture. To gain more insight into the influence of the intermolecular interaction and of the mass of the molecules, we performed high-resolution measurements of the linewidths and peak positions of the vibrational Raman spectrum of pure nitrogen, nitrogen in argon, and nitrogen in helium. The research was carried out at room temperature and at pressures up to the melting line. It turns out that, in contrast with expectation, the linewidth as well as the frequency shift is essentially the same for pure nitrogen as for nitrogen diluted in argon, although both the mass and the potential well depth are quite different. The experimental results show the same tendency as recent computer simulations.  相似文献   

11.
Heaps WS  Burris J  French JA 《Applied optics》1997,36(36):9402-9405
Atmospheric temperature can be measured remotely by a lidar system that measures the ratio of backscattered signals from vibrational-rotational Raman scattering by N(2) to pure vibrational Raman scattering. We present simulations of the performance of an airborne lidar system (based on the Goddard Airborne Raman lidar) that employs this technique.  相似文献   

12.
A lidar polychromator design for the measurement of atmospheric temperature profiles in the presence of clouds with the rotational Raman method is presented. The design utilizes multicavity interference filters mounted sequentially at small angles of incidence. Characteristics of this design are high signal efficiency and adjustable center wavelengths of the filters combined with a stable and relatively simple experimental setup. High suppression of the elastic backscatter signal in the rotational Raman detection channels allows temperature measurements independent of the presence of thin clouds or aerosol layers; no influence of particle scattering on the lidar temperature profile was observed in clouds with a backscatter ratio of at least 45. The minimum integration time needed for temperature profiling with a statistical temperature error of +/-1 K at, e.g., 20-km height and 960-m height resolution is 1.5 h.  相似文献   

13.
A single-laser Raman differential absorption lidar (DIAL) for ozone measurements in clouds is proposed. An injection-locked XeCl excimer laser serves as the radiation source. The ozone molecule number density is calculated from the differential absorption of the anti-Stokes rotational Raman return signals from molecular nitrogen and oxygen as the on-resonance wavelength and the vibrational-rotational Raman backscattering from molecular nitrogen or oxygen as the off-resonance wavelength. Model calculations show that the main advantage of the new rotational vibrational-rotational (RVR) Raman DIAL over conventional Raman DIAL is a 70-85% reduction in the wavelength-dependent effects of cloud-particle scattering on the measured ozone concentration; furthermore the complexity of the apparatus is reduced substantially. We describe a RVR Raman DIAL setup that uses a narrow-band interference-filter polychromator as the lidar receiver. Single-laser ozone measurements in the troposphere and lower stratosphere are presented, and it is shown that on further improvement of the receiver performance, ozone measurements in clouds are attainable with the filter-polychromator approach.  相似文献   

14.
We present the first wind-velocity profiles obtained with a direct-detection Doppler lidar that uses a Mach-Zehnder interferometer (MZI) as spectral discriminator. The measurements were performed in the lower stratosphere, between 10 and 40 km in altitude, at the Observatoire de Haute Provence (OHP), France, during nighttime. They are in excellent agreement with those obtained simultaneously and independently with the already validated double Fabry-Perot interferometer (FPI) of the OHP Doppler lidar (mean difference lower than the combined standard deviation). A statistical analysis shows that the random error obtained with this experimental MZI is 1.94 times the Cramer-Rao lower bound and is approximately half of that given by the FPI (both operating in photometric mode). Nevertheless, the present MZI measurements are sensitive to the presence of atmospheric particles and need an additional correction, whereas the OHP FPI is designed to be insensitive to particulate scattering.  相似文献   

15.
She CY  Yue J  Yan ZA  Hair JW  Guo JJ  Wu SH  Liu ZS 《Applied optics》2007,46(20):4444-4454
Atmospheric line-of-sight (LOS) wind measurement by means of incoherent Cabannes- Mie lidar with three frequency analyzers, two double-edge Fabry-Perot interferometers, one at 1064 nm (IR-FPI) and another at 355 nm (UV-FPI), as well as an iodine vapor filter (IVF) at 532 nm, utilizing either a single absorption edge, single edge (se-IVF), or both absorption edges, double edge (de-IVF), was considered in a companion paper [Appl. Opt. 46, 4434 (2007)], assuming known atmospheric temperature and aerosol mixing ratio, Rb. The effects of temperature and aerosol variations on the uncertainty of LOS wind measurements are investigated and it is found that while the effect of temperature variation is small, the variation in R(b) can cause significant errors in wind measurements with IVF systems. Thus the means to incorporate a credible determination of R(b) into the wind measurement are presented as well as an assessment of the impact on wind measurement uncertainty. Unlike with IVF methods, researchers can take advantage of design flexibility with FPI methods to desensitize either molecular scattering for IR-FPI or aerosol scattering for UV-FPI. The additional wind measurement uncertainty caused by R(b) variation with FPI methods is thus negligible for these configurations. Assuming 100,000 photons from Cabannes scattering, and accounting for the Rb measurement incorporated into the IVF method in this paper, it is found that the lowest wind uncertainty at low wind speeds in aerosol-free air is still with UV-FPI, ~32% lower than with de-IVF. For 0.050.07, the IR-FPI outperforms all other methods. In addition to LOS wind uncertainty comparison under high wind speed conditions, the need of an appropriate and readily available narrowband filter for operating the wind lidar at visible wavelengths under sunlit condition is discussed; with such a filter the degradation of LOS wind measurement attributable to clear sky background is estimated to be 5% or less for practical lidar systems.  相似文献   

16.
Lanciano O  Fiocco G 《Applied optics》2007,46(22):5176-5182
Nighttime stellar photometric measurements have been carried out with a commercial digital single-lens reflex camera to determine the atmospheric optical thickness on large fields of view (FOV). Specific procedures of image analysis allow to extract an equivalent irradiance for a number of stars and for the sky light background; thus, a measure of the optical thickness in each star direction can be retrieved. A larger FOV is obtained by stitching several photographs shot in quick sequence on adjacent regions of the sky: such measurements provide almost instantaneous maps of optical thickness and skylight background that indicate the degree of homogeneity of the aerosol load. Additional information provided by the combined use of the camera and a lidar is presented. The zenithal optical thickness is used with values of the aerosol backscatter provided by a lidar system to obtain the aerosol extinction-to-backscatter ratio.  相似文献   

17.
Temperature measurements made with a combined Rayleigh -Mie and Raman lidar   总被引:3,自引:0,他引:3  
The NASA Goddard Space Flight Center stratospheric ozone lidar system has the capability of collecting both Rayleigh -Mie and Raman backscatter data simultaneously at a number of wavelengths. Here we report on an improved method by which temperature can be derived from a combination of the Rayleigh -Mie return at 351-nm lidar channels and the Raman nitrogen return at 382-nm lidar channels. We also examine some common techniques by which temperatures are retrieved from lidar data. Finally, we show results obtained in 1995 during two Network for the Detection of Stratospheric Change intercomparison campaigns at Lauder, New Zealand and Mauna Loa, Hawaii.  相似文献   

18.
Behrendt A  Nakamura T  Tsuda T 《Applied optics》2004,43(14):2930-2939
We describe the performance of a combined Raman lidar. The temperature is measured with the rotational Raman technique and with the integration technique simultaneously. Additionally measured parameters are particle extinction and backscatter coefficients and water vapor mixing ratio. In a previous stage of the system, instrumental problems restricted the performance. We describe how we rebuilt the instrument and overcame these restrictions. As a result, the measurement time for the same spatial resolution and accuracy of the rotational Raman temperature measurements is reduced by a factor of approximately 4.3, and their range could be extended for the first time to the upper stratosphere.  相似文献   

19.
The spectral airglow temperature imager is a two-channel, Fabry-Perot spectrometer with an annular field of view and a cooled CCD detector. The detected fringe pattern contains spectral information in the radial direction and azimuthal spatial information from the annular field of view. The instrument measures the rotational temperature from the O2 atmospheric (0,1) nightglow emission layer at 94 km and from the Q branch of the OH Meinel (6,2) band emission layer at 87 km. The method for temperature derivation is based on the temperature dependence of the line-emission rates. This dependence allows a determination of the temperature by a least-squares fit of the measured spectrum to a set of synthetic spectra, an approach that minimizes the effect of noise from the sky background and the detector. The spectral airglow temperature imager was developed to meet a need for monitoring the role of the mesosphere in climate variability through long-term observation of the mean temperature and the gravity waves from a single station, as well as large-scale wave perturbations through the use of multiple stations.  相似文献   

20.
A study on the feasibility of using pseudorandom modulation continuous-wave (PMCW) Na lidar for mesopause-region temperature and horizontal wind measurements is presented with a number of specific geometries and associated beam-telescope overlap functions, suitable for ground-based and airborne deployments. The performance of these deployment scenarios is analyzed by scaling from the received signal and sky background and the measurement uncertainties in temperature and horizontal wind of the well-tested Colorado State University pulsed Na lidar. Using currently available high-power (~20 W) continuous-wave Na narrowband lasers, a compact PMCW bistatic Na lidar system can indeed be deployed to simultaneously measure mesopause-region temperature and horizontal winds on a 24 h continuous basis, weather permitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号