首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
电网谐波电压对注入式混合有源电力滤波器的补偿性能以及安全性有很大的影响,但是目前对这方面的研究很少。该文在分析采用不同控制策略时注入式混合有源电力滤波器工作性能的基础上,并根据实际工程遇到的问题,提出一种基于检测负载电流、电网电流和接入点谐波电压的复合控制方案。其中电网谐波治理主要靠检测负载电流来完成,而检测电网电流主要用来提高治理精度, 检测接入点谐波电压用来消除电网谐波电压对装置的安全性造成的影响。仿真和实验结果表明采用这种复合控制的注入式混合有源电力滤波器即使在电网电压畸变时仍能安全稳定运行,并取得很好的滤波效果,从而达到实用化的目的。  相似文献   

2.
对并联混合型有源电力滤波器(APF)的补偿特性进行了研究,针对单一检测网侧或负载侧谐波电流控制方法的缺点,提出了一种改进型的并联混合型有源电力滤波结构,采用复合式控制方法,能够较好地解决APF容量受限问题。利用仿真验证了其正确性。  相似文献   

3.
根据配电网10kV高压侧对大容量谐波抑制与无功补偿的要求,提出注入式混合型有源电力滤波器拓扑结构(IHAPF),详细阐述了IHAPF的谐波抑制特性.同时结合某铜箔厂大型整流装置谐波抑制和无功补偿的工程实例,介绍了IHAPF的设计方法和软硬件构成,并从项目成本和治理效果两方面分析了IHAPF的应用优势.  相似文献   

4.
在分析单独注入式混合型有源电力滤波器(Hybrid Active Power Filter with Injection Circuit,简称IHAPF)基本原理与控制策略的基础上,得出基于检测负载谐波电流的控制策略在工程应用上具有优势的结论.建立了基于检测负载谐波电流控制策略的IHAPF的数学模型,根据该模型得出系统的传递函数,并通过稳定判据得到了使系统保持稳定的控制器参数取值范围.实验结果表明,采用基于检测负载谐波电流的控制策略时IHAPF能达到理想的滤波效果,并且能确保系统安全稳定运行.  相似文献   

5.
针对并联混合型有源电力滤波器(HAPF)在负载发生突变时会引起参考电流放大,从而引起有源电力滤波器(APF)过流和过载现象的发生,提出了一种在HAPF复合控制策略中加入参考电流限制的控制方法,以抑制存在的过流和过载现象。仿真结果显示这种控制方法的有效性。  相似文献   

6.
7.
在分析注入式混合型有源电力滤波器基本工作原理的基础上,建立其数学模型,并以此为基础分析了逆变器基波环流的产生及危害.为消除逆变器输出中的基波成分,确保系统的安全稳定运行,提出了一种注入式HAPF的注入电流和逆变器输出电流双闭环控制策略.注入电流控制外环实现注入电流完全跟踪负载谐波电流,保证系统的精度;逆变器输出电流控制内环对输出电流进行限制,抑制系统的谐振,加入阻尼,保证逆变器的安全可靠运行.仿真及实验结果验证了本文所述控制策略在谐波控制精度及系统安全可靠性方面的优势.  相似文献   

8.
贾煜  罗安  范瑞祥  唐杰 《湖南电力》2006,26(Z2):37-41
通过对有源部分进行适当控制来等效增大电网支路的谐波阻抗,以改善无源滤波器的滤波性能和抑制无源支路与电网等效电感之间产生的谐振现象;无源支路在补偿无功功率的同时还可以滤除特征谐波电流.对该系统的稳态补偿性能和抑制谐波谐振性能进行了详细的分析,理论分析和实验结果证明了该系统的可行性和正确性.  相似文献   

9.
提供了一种大容量、低成本的注入式混合型有源滤波器以适用于高压系统同时进行谐波抑制和无功补偿,其中,利用大容量无源滤波器实现谐波抑制和无功补偿;采用有源滤波器改善系统滤波效果并阻尼无源滤波器与系统阻抗之间的串、并联谐振。讨论了采用检测电网电流的控制策略时,注入式混合型有源滤波器的工作原理,其基本思想是通过对有源部分进行适当控制来等效增大电网支路的谐波阻抗。从抑制电网阻抗与无源滤波器之间的串、并联谐振,改善无源滤波器的滤波效果以及提高整个系统的鲁棒性3个方面详尽分析了注入式混合型有源滤波器的稳态补偿特性。相关仿真结果及工程应用效果均证明了该混合型有源滤波器对于同时进行谐波抑制和无功补偿的可行性。  相似文献   

10.
根据某厂谐波治理工程对谐波抑制及无功功率补偿的要求,提出采用大功率单独注入式有源电力滤波器方案,分析了其拓扑结构和特点,建立控制系统方程,并从稳态控制和动态控制对其进行稳定控制机理研究,比较了根据滤波支路谐波电流、电源谐波电流、负载谐波电流、负载谐波电压进行控制的4种动态控制策略。对工况复杂、谐波电流变化较大的应用场合,最终选择根据负载谐波电流来控制逆变器输出电压的有源电力滤波器控制策略,并通过实验验证了其较好的滤波效果。  相似文献   

11.
并联混合有源滤波器复合控制策略   总被引:8,自引:5,他引:3  
将广义积分PI控制器与基于虚拟电感的指定消谐前馈控制算法结合提出了一种新的复合电流控制策略.其中,前馈控制器的基本思想是:在指定谐波频率处将有源滤波器(APF)控制成一个"虚拟电感",与无源滤波器(PF)发生串联谐振,为谐波电流提供一个低阻抗通路,动态性能良好.前馈控制对PF参数依赖性强,控制精度难以保证;而广义积分PI控制器能够无稳态误差地对特定频率谐波进行补偿,但是对于变化的负载,广义积分PI控制器需要数个周期才能实现谐波电流的精确跟踪.因此,该复合控制策略保证了混合有源滤波器(HAPF)既具有良好的动态性能又有较小的稳态误差,而且能对谐波进行分次补偿.实验结果证明所提控制策略是可行的和有效的.  相似文献   

12.
基于复合控制策略的混合有源滤波器谐波治理研究   总被引:6,自引:0,他引:6       下载免费PDF全文
针对大功率混合有源电力滤波器,为了有效降低有源部分的容量且提高补偿性能,首先对一种大容量混合有源滤波器进行改进。通过建立单相等效电路,对这种拓扑结构下的两种传统的电压源控制策略进行分析,在此基础上重点研究一种电压源复合控制策略。在分析了复合控制策略下的滤波原理后,对滤波器谐波检测方法、滤波延时的补偿进行研究,并设计出完整的复合控制策略电路结构。最后,对三种控制策略分别进行了仿真实验。通过对比补偿后的系统电流波形和补偿电流的动态跟踪特性,结果表明复合控制策略下的混合有源滤波器综合性能要优于传统电压源控制策略下混合有源滤波器性能,具有更强的实用性。  相似文献   

13.
大功率单独注入式有源电力滤波器系统工程实现   总被引:4,自引:3,他引:1  
针对江西某厂110 kV变电站10 kV配电网谐波治理工程的实际需求,提出在该厂已配置有无源滤渡器的基础上采用大功率单独注入式有源电力滤波器(HAPFSIC)的补偿方案.该方案包含了HAPFSIC装置和信息管理2个子系统.HAPFSIC装置通过准确检测和实时控制较好地消除电网谐波,信息管理系统则主要实现对电网电压、电流和HAPFSIC装置工作状态进行记录、分析和显示的功能.分别介绍了HAPFSIC装置在工程应用过程中的各组成部分,并对现场实际应用进行了分析.该有源滤波装置已在江西某厂成功投运,不但将该厂的平均功率因数由投运前的0.78左右提高到0.94以上,而且使电网电流谐波总畸变率从28.5%降为4.9%,有效降低了电网中的谐波含量,为企业的安全稳定生产提供了良好的保障.  相似文献   

14.
针对电网中非线性负载引起的谐波问题,提出了一种并联混合有源电力滤波器结构。基于此拓扑结构,建立了其数学模型,并设计了基于PI控制策略的电流控制器。针对传统PI控制方法补偿精度受带宽制约,补偿效果不理想的问题,提出了基于重复控制的电流双闭环控制方法,并设计了双闭环电流控制器。仿真和实验结果表明,该控制策略具有很高的稳态补偿精度,能够有效补偿由非线性负载引起的谐波电流。补偿后电网电流THD降低到5%以下,波形近似于正弦波。  相似文献   

15.
有源电力滤波器(APF)是近年来提出的一种新型的谐波及无功动态补偿装置,与传统的无源LC滤波器相比较,具有响应速度快、补偿效果好和能够实现动态补偿的优点。数字信号处理器DSP芯片因为具有信号处理快速性特点,所以非常适合于有源滤波器的控制。经过综合归纳分析,对基于DSP处理器TMS320F2812的有源滤波器的硬件电路与软件流程做出了整体设计。  相似文献   

16.
王林川  郑妍 《黑龙江电力》2012,35(5):321-323
在研究了PI控制方法控制方法的基础上,提出了对有源电力滤波器直流侧电压实现模糊递推PI控制的方法,设计了模糊控制规则,详细介绍了模糊递推PI控制方法的控制原理,并且针对PI控制方法和模糊递推PI控制方法采用Matlab/Simunlink仿真软件对直流侧电压进行仿真分析。仿真结果表明,模糊递推PI控制方法在系统稳定以及负载突变时比PI控制方法能够更加有效地消除稳态误差,使有源电力滤波器直流侧电压实现精确跟踪,从而提高滤波器的滤波效果。  相似文献   

17.
有源电力滤波器双环软启动实用控制策略分析   总被引:2,自引:0,他引:2  
本文从配网系统谐波研究的实际问题出发,以有源电力滤波器的关键技术为研究对象,对双环软启动控制策略的工作过程进行研究和分析,揭示出有源电力滤波器各控制参数间的关联和制约关系,同时模拟程序执行的实际情形建模和仿真修正了参数,以双CPU控制为核心设计制作了一套应用于低压配网380V,容量为100kVA的并联电压型有源电力滤波器装置,并验证了其策略在应用中的可行性,将有助于进一步实际研发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号