首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Sequential extraction technique was used to study the mobility and dynamics of operationally determined chemical forms of heavy metals in the sediments and their ecological risk on the biotic species. The results reveal that high environmental risk of Cd, Ni, Co and Pb, are due to their higher availability in the exchangeable fraction. Substantial amount of Cd, Co, Mn, Cu, Zn, Ni and Pb, is observed as carbonate bound, which may result due to their special affinity towards carbonate and their co-precipitation with its minerals. Colloids of Fe-Mn oxides act as efficient scavengers for the heavy metals like Zn, Pb, Cu, Cr, Co, and Ni. Toxic metals like Ni, Pb and Cd are of concern, which occasionally may be associated with adverse biological effects based on the comparison with sediment quality guidelines (SQGs). The risk assessment code (RAC) suggests that the highest mobility of Cd poses a higher environmental risk and also threat to the aquatic biota. Factor analysis reveals that the enrichment of heavy metals in bioavailable fraction is mostly contributed from anthropogenic sources. These contributing sources are highlighted by cluster analysis.  相似文献   

2.
Influence of heavy metals was investigated by conducting various tests on the samples collected from Nonthaburi dumpsite in Thailand. The heavy metal concentration in the solid waste and its mobility potential based on its binding forms was studied. The sequential extraction method was used to determine the binding forms of metals. From the analysis, Zn was found to be highest concentrated heavy metal compared to Mn, Cu, Cr, Cd, Pb, Ni and Hg in the solid waste. From the sequential extraction, Mn, Zn and Cd mostly found in reducible form, showed its susceptibility to be leached easily. Cu and Cr were found predominantly in oxidizable form and stable under anaerobic condition. Pb and Ni were present in residual form, which is inert. The estimated individual contamination factor (C(f)(i)), showed Zn with highest affinity to leach. The concentration level of all the heavy metals in the leachate except for Cr was noticed to be below the National effluent standards. Though, indicated to be safe for disposal, its effect in any concentration proved toxic to the plant life from the seed germination toxicity test using synthetic chelate ethylene diamine tetraacetic acid (EDTA).  相似文献   

3.
检测了杭州下沙河网区18条河道表层底泥重金属Cu、Zn、Pb、Cd、Ni的含量,分析了研究区域内的重金属污染情况,并用潜在生态危害指数法对河道底泥重金属污染情况进行评价,通过聚类分析法分析重金属的空间分布特征.结果表明,Cd污染最严重,超标率为94.44%,平均超标倍数为16.50,Cd的平均潜在生态风险为很高风险,Cu、Zn、Pb、Ni的平均潜在生态风险为低风险,重金属平均综合潜在生态风险属于高风险.重金属聚类分析结果显示Cd、Ni、Pb三种元素相关性显著,应受同一污染源因素影响;采样点聚类分析结果显示下沙河网河道底泥重金属污染分布较为均匀.  相似文献   

4.
Soils on serpentinites in some regions of northwestern Spain have been the subject of agricultural management practices involving the use of fertilizers and various types of organic waste containing heavy metals. Although such practices have facilitated crop growth, they have also raised the natural contents in heavy metals of the soils. In this work, three ferralic Cambisols and another three mollic Leptosols with high Cr and Ni contents were used to study competitive sorption and desorption of six heavy metals via K(d100), which was employed as a measure of the ability of the soils to adsorb and retain each metal. Lead was found to be the metal sorbed and retained to the greatest extent, and Cd, Ni and Zn those sorbed and retained in the smallest amounts. Although the ferralic Cambisols were found to contain greater amounts of natural heavy metals, they exhibited an increased ability to adsorb and retain the body of metals relative to the mollic Leptosols by effect of their increased contents in clay and Fe, Mn and Al oxides, in addition to their higher ion-exchange capacity. Based on the results, Pb and Cu are strongly bound, and Zn, Cd and Ni weakly bound, to the soils. The ferralic Cambisols exhibited an increased capacity to adsorb and retain Cd, Ni, Zn and--especially--Cr than the mollic Leptosols; the latter, however, proved more effective in adsorbing and retaining Cu and Pb by virtue of their increased organic matter contents. Copper sorption and retention, and Pb retention, were found to be correlated with the content in organic matter and that in vermiculite--which was only present in the mollic Leptosols--in the clay fraction.  相似文献   

5.
Distribution of heavy metals in Lakes Doirani and Kerkini, Northern Greece   总被引:2,自引:0,他引:2  
The distribution of heavy metals in two lakes of high ecological significance, Doirani and Kerkini, located in Northern Greece was studied. Eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined in water, total suspended solids, fine and coarse sediments. Moreover, the modified BCR fractionation scheme was employed in sediments and suspended solids to determine soluble, oxidisable, reducible and residual fractions of metals. The Lake Doirani presents higher metal concentrations in aqueous phase than Lake Kerkini; Cd, Cu, Ni, Pb and Zn are above the chronic freshwater quality criteria for aquatic life. In both lakes, Fe and Mn are the most abundant elements in total suspended solids whereas Cd the less abundant. The Lake Kerkini exhibits higher concentrations of all the examined metals in sediments comparing to the Lake Doirani, however the concentrations are lower than the sediment quality guidelines. Cd in sediments is mainly in soluble fraction, Pb and Cu exhibit significant oxidisable fractions whereas, Cr and Fe associated mainly with residual fraction.  相似文献   

6.
Heavy metals are one of the important factors that affect the final disposal of sewage sludge. In this paper, the metal mobility and bioavailability of heavy metals in sewage sludge were studied by using Community Bureau of Reference (BCR) sequential extraction procedure to get more information for the reasonable disposal of sludge. Sewage sludge was collected from five municipal wastewater treatment plants and three industrial wastewater treatment plants. The sludge was examined for and the total concentrations and different chemical fractions of Cd, Cr, Pb, Cu, Ni and Zn. The total metal concentrations of heavy metals in sludge varied greatly. The contents of Zn and Cu were the highest, followed by then Cr, Ni and Pb and the content of Cd was the least. There was no significant difference in total metal concentration between municipal and industrial wastewater treatment plants. Fractions extracted by the BCR sequential procedure were acid soluble/exchangeable, reducible and oxidizable fraction. Sludge pH was found to have profound effect on the chemical fractions of heavy metals. Acidic sludges (Xiamen and Jinlin Petrochemical Group Co., wastewater treatment plant) had higher proportion of the acid soluble/exchangeable fractions than in neutral sludge. In neutral sludges, Pb and Cr were principally distributed in between the oxidizable fraction and the residual fraction; Cu was in the oxidizable fraction; Cd mainly in the residual fraction in municipal wastewater treatment plants and had high percentage of acid soluble/exchangeable and reducible fractions in industrial wastewater treatment plants; Ni and Zn had higher percentage in the acid soluble/exchangeable and the oxidizable fraction.  相似文献   

7.
The particle size distribution, geochemical composition and sequential leaching of metals (Fe, Mn, Ni, Cu, Co, Cr, Pb, Zn and Cd) are carried out in core sediments (<88 microm) from the Brahmani and Nandira Rivers, India. To confirm the contamination of downstream sediments by fly ash, mineralogical and morphological characterizations were carried out. High environmental risk of Co, Pb and Ni is due to their higher availability in exchangeable fraction. The metals like Zn, Cu and Mn represent an appreciable portion in the carbonate phase. Metals such as Zn, Pb, Cd, Co and Ni are associated with reducible phase may be due to adsorption. The organic bound Cu, Zn, and Pb seem to be second dominant fraction among non-lithogenous in Nandira sediments. Factor analysis data reveals that textural parameters, Fe-Mn oxy/hydroxides, organic precipitation and coal fly ash disposals, are individually responsible for the enrichment of heavy metals. The relationships among the stations are highlighted by cluster analysis to identify the contamination levels.  相似文献   

8.
A total elemental analysis was performed on a municipal solid waste (MSW) fly ash sample, before and after it was treated at 1000 degrees C, to reveal the metal distribution between the volatile matter and the ash residue. Metals such as Pb, Zn, Cd, and to a lesser degree, Cr, Mn and Ni, were volatilized. Addition of chlorinating agents generally increased the volatility of certain elements. More acid resistant compounds were formed in the ash residue after the heat treatment using CaCl2 as a chlorinating agent. The efficiencies of volatilization of the metals, using Cl2 as a chlorinating agent, were generally higher compared with using CaCl2. However, CaCl2 was found to be a more selective chlorinating agent for volatilizing the heavy metals of concern, i.e., Pb, Cd, Zn and Cu. The efficiencies of volatilization of the recovered metals were approximately proportional to their standard free-energy changes (delta G(o) for the corresponding chlorination reactions.  相似文献   

9.
Various single extractant (DTPA, EDTA, NH(4)NO(3), CaCl(2), and NaNO(3)) was used to evaluate the bioavailability of heavy metals from tannery wastewater contaminated soil and translocation of metals to the plant of Brassica juncea L. Czern. (var. Vaibhav). The extraction capacity of the metals was found in the order: EDTA>DTPA>NH(4)NO(3)>CaCl(2)>NaNO(3). Cluster analysis between different extractants showed close relationship between DTPA, CaCl(2), NH(4)NO(3) except EDTA and NaNO(3), which showed dispersed relationship. Principal components analysis (PCA) applied to metals extracted with EDTA showed different grouping of metals (i) Na, Co, Pb, Ni and (ii) K, Mn, Zn, Cr, in the loading plot which showed similar availability from contaminated soil. PCA applied on metals accumulation data in the plants also exhibited different grouping of variables (i) Cu, Co, Ni, Cd and (ii) Mn, Zn, Pb, Fe showed almost similar accumulation pattern in the plants. The data displayed positive loading for Mn and negative loading for Cr with PC(2). Cd and Zn have shown high loadings in PC(1) and PC(2), respectively. The translocation of most of the tested metals (Pb, Mn, Cd, Ni, Fe) in the shoot of the plant was found better except Cr, Cu, Co and K. The correlation analysis between different extractable metals and metal accumulation in the shoot of the plant showed significant positive correlation with Pb and Cr. Overall, extraction capacity and cluster analysis augmented that EDTA was found suitable extractant for tannery wastewater contaminated soil to B. juncea.  相似文献   

10.
The concentrations of metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in street sediment samples were determined by flame atomic absorption spectrometry (FAAS) using the modified BCR (the European Community Bureau of Reference) sequential extraction procedure. According to the BCR protocol for extracting the metals from the relevant target phases, 1.0 g of specimen of the sample was treated with 0.11 M acetic acid (exchangeable and bound to carbonates), 0.5M hydroxylamine hydrochloride (bound to iron- and manganese-oxides), and 8.8M hydrogen peroxide plus 1M ammonium acetate (bound to sulphides and organics), sequentially. The residue was treated with aqua regia solution for recovery studies, although this step is not part of the BCR procedure. The mobility sequence based on the sum of the BCR sequential extraction stages was: Cd approximately Zn ( approximately 90%)>Pb ( approximately 84%)>Cu ( approximately 75%)>Mn ( approximately 70%)>Co ( approximately 57%)>Ni ( approximately 43%)>Cr ( approximately 40%)>Fe ( approximately 17%). Enrichment factors as the criteria for examining the impact of the anthropogenic emission sources of heavy metals were calculated, and it was observed that the highest enriched elements were Cd, Pb, and Zn in the dust samples, average 190, 111, and 20, respectively. Correlation analysis (CA) and principal component analysis (PCA) were applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. PCA revealed that the sampling area was mainly influenced from three pollution sources, namely; traffic, industrial, and natural sources. The results show that chemical sequential extraction is a precious operational tool. Validation of the analytical results was checked by both recovery studies and analysis of the standard reference material (NIST SRM 2711 Montana Soil).  相似文献   

11.
The sorption and desorption of six heavy metals by and from the surface or immediately subsurface horizons of eleven acid soils of Galicia (N.W. Spain) were characterized by means of batch experiments in which the initial sorption solution contained identical mass concentrations of each metal. Concentration-dependent coefficients K(d) were calculated for the distribution of the metals between the soil and solution phases, and the values obtained for initial sorption solution concentrations of 100mgL(-1) of each metal (K(d100)) were used, for each soil, to order the metals as regards their sorption and retention. Pb and Cu were sorbed and retained to a greater extent than Cd, Ni or Zn, which had low K(d100) values. Pb was sorbed more than any other metal. Cr was generally sorbed only slightly more than Cd, Ni or Zn, but was strongly retained, with K(d100) (retention) values greater than those of Pb and Cu in soils with very low CEC (<3cmol((+))kg(-1)). The sorption of Pb and Cu correlated with organic matter content, while the retention of these and the other metals considered appeared to depend on clay minerals, especially kaolinite, gibbsite, and vermiculite.  相似文献   

12.
A study to determine total and mobile heavy metals concentrations in sediments from Algeciras Bay was performed and pollution hotspots were identified. The effects on aquatic organisms were established using sediment quality guidelines (SQGs). Ni and Cr exceeded the effect range medium and low levels, respectively, around industrial area. Potential toxicity of metals was determined by diethylenetriaminepenta-acetic acid (DTPA) extractions and low alert levels of Co, Cu, Zn, Cd, Ni and Pb were exceeded at most sampling sites. Three pollution indicators were used showing significant values for As, Ni, Cr, Pb and Cd. Sediment speciation using the sequential extraction BCR procedure was carried out, being Cd, Zn, Pb and As the most available metals. Principal component, cluster and ANOVA analyses were performed in order to assess the sources of metals and the influence of seasonality and anthropogenic activities on the sediment quality. Two principal component analysis (PCA) factors were obtained identifying the sampling sites affected by anthropogenic activities; Ni-Cr and Zn-Cu-V clusters were also obtained associated with stainless steel and petrochemical industrial activities. ANOVA showed the outstanding sites because of total metal concentration and significant differences among sampling sites by the acid extractable and reducible fractions for all metals except for Ba and V.  相似文献   

13.
Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation.  相似文献   

14.
Chelant extraction of heavy metals from contaminated soils.   总被引:36,自引:0,他引:36  
The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction, the soil was successfully treated passing both the Toxicity Characteristics Leaching Procedure (TCLP) and EPA Total Extractable Metal Limit. The final residual Pb concentration was about 300 mg/kg, with a corresponding TCLP of 1.5 mg/l. Removal of the exchangeable and carbonate fractions for Cu and Zn was achieved during the first extraction stage, whereas it required two extraction stages for the same fractions for Pb. Removal of Pb, Cu, and Zn present as exchangeable, carbonates, and reducible oxides occurred between the fourth- and fifth-stage extractions. The overall removal of copper, lead, and zinc from the multiple-stage washing were 98.9%, 98.9%, and 97.2%, respectively. The concentration and operating conditions for the soil washing extractions were not necessarily optimized. If the conditions had been optimized and using a more representative Pb concentration (approximately 12000 mg/kg), it is likely that the TCLP and residual heavy metal soil concentrations could be achieved within two to three extractions. The results indicate that the J-Field contaminated soils can be successfully treated using a soil washing technique.  相似文献   

15.
Cockles (Anadara granosa) sample obtained from two rivers in the Penang State of Malaysia were analyzed for the content of arsenic (As) and heavy metals (Cr, Cd, Zn, Cu, Pb, and Hg) using a graphite flame atomic absorption spectrometer (GF-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometer (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data. MANOVA showed a strong significant difference between the two rivers in term of As and heavy metals contents in cockles. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used only two parameters (Zn and Cd) affording more than 72% correct assignations. Results indicated that the two rivers were different in terms of As and heavy metal contents in cockle, and the major difference was due to the contribution of Zn and Cd. A positive correlation was found between discriminate functions (DF) and Zn, Cd and Cr, whereas negative correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metals and arsenic content. Taking into account of these results, it can be suggested that a continuous monitoring of As and heavy metals in cockles be performed in these two rivers.  相似文献   

16.
Sorption of Cd(2+), Cr(3+), Cu(2+), Ni(2+), Pb(2+) and Zn(2+) onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni(2+)>Cd(2+)>Cu(2+)>Pb(2+)>Zn(2+)>Cr(3+). The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb(2+)>Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Cr(3+). The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol(-1) for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The DeltaG degrees and DeltaH degrees values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low DeltaH degrees values revealed that physical adsorption significantly contributed to the mechanism.  相似文献   

17.
The applicability of 2,2'-bipyridyl and erythrosine co-precipitation method for the separation and preconcentration of some heavy metals, such as Cd, Co, Cu, Ni, Pb and Zn in actual samples for their determination by ICP-OES and F-AAS was studied. Experimental conditions influencing the recovery of the investigated metals, such as pH, molar ratio of 2,2'-bipyridyl to erythrosine, the effect of time on co-precipitation were optimized. The analytical characteristics of the method (e.g. limit of detection, sensitivity, linear range and preconcentration factor) were obtained. The limits of detection LOD (ng mL(-1)) of the ICP-OES (F-AAS) method were: Cd: 4.0 (7.75), Co: 3.1 (57.2), Cu: 18 (10.3), Ni 21.3 (32.8), Pb: 35.9 (29.2) and Zn: 10.2 (6.90). The recovery of all the elements tested was more than 93%. The influence of inorganic matrix was examined. The proposed method was applied to determination of Cd, Co, Cu, Ni, Pb and Zn in vegetables and certified reference material (NCS ZC85006 Tomato).  相似文献   

18.
Removal of trace amounts of heavy metals can be achieved by means of selective ion-exchange processes. The newly developed resins offered a high resin capacity and faster sorption kinetics for the metal ions such as Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions. In the present study, the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions from aqueous solutions was investigated. Experimental investigations were undertaken using the ion-exchange resin Lewatit CNP 80 (weakly acidic) and were compared with Lewatit TP 207 (weakly acidic and chelating). The optimum pH range for the ion-exchange of the above mentioned metal ions on Lewatit CNP 80 and Lewatit TP 207 were 7.0-9.0 and 4.5-5.5, respectively. The influence of pH, contact time, metal concentration and amount of ion-exchanger on the removal process was investigated. For investigations of the exchange equilibrium, different amounts of resin were contacted with a fixed volume of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ion containing solution. The obtained sorption affinity sequence in the presented work was Ni(2+)>Cu(2+)>Cd(2+)>Zn(2+)>Pb(2+). The metal ion concentrations were measured by AAS methods. The distribution coefficient values for metal ions of 10(-3)M initial concentration at 0.1mol/L ionic strength show that the Lewatit CNP 80 was more selective for Ni(2+), Cu(2+) than it was for Cd(2+), Zn(2+) and Pb(2+). Langmuir isotherm was applicable to the ion-exchange process and its contents were calculated. The uptake of metal ions by the ion-exchange resins was reversible and thus has good potential for the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions. The amount of sorbed metal ion per gram dry were calculated as 4.1, 4.6, 4.7, 4.8, and 4.7mequiv./g dry resin for Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+), respectively. Selectivity increased in the series: Cd(2+)>Pb(2+)>Cu(2+)>Ni(2+)>Zn(2+). The results obtained showed that Lewatit CNP 80 weakly acidic resin had shown better performance than Lewatit TP 207 resin for the removal of metals. The change of the ionic strength of the solution exerts a slight influence on the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+). The presence of low ionic strength or low concentration of NaNO(3) does not have a significant effect on the ion-exchange of these metals by the resins. We conclude that Lewatit CNP 80 can be used for the efficient removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions.  相似文献   

19.
In this study, the use of inductively coupled plasma/optical emission spectrometry (ICP/OES) to determine multi-metal binding to three biomasses, Sphagnum peat moss, humin and humic acids is reported. All the investigations were performed under part per billion (ppb) concentrations. Batch pH profile experiments were performed using multi-metal solutions of Cd(II), Cu(II), Pb(II), Ni(II), Cr(III) and Cr(VI). The results showed that at pH 2 and 3, the metal affinity of the three biomasses exposed to the multi-metal solution that included Cr(III) presented the following order: Cu(II), Pb(II)>Ni(II)>Cr(III)>Cd(II). On the other hand, when Cr(VI) was in the heavy metal mixture, Sphagnum peat moss and humin showed the following affinity: Cu(II), Pb(II)>Ni(II)>Cr(VI)>Cd(II); however, the affinity of the humic acids was: Cu(II)>Pb(II), Cr(VI)>Ni(II)>Cd(II). The results demonstrated that pH values of 4 and 5 were the most favorable for the heavy metal binding process. At pH 5, all the metals, except for Cr(VI), were bound between 90 and 100% to the three biomasses. However, the binding capacity of humic acids decreased at pH 6 in the presence of Cr(VI). The results showed that the ICP/OES permits the determination of heavy metal binding to organic matter at ppb concentration. These results will be very useful in understanding the role of humic substances in the fate and transport of heavy metals, and thus could provide information to develop new methodologies for the removal of low concentrations of toxic heavy metals from contaminated waters.  相似文献   

20.
Dynamic cadmium distribution has been studied in six main rivers flowing through the largest, most highly developed and polluted area of southern Taiwan. Sediment profile samples were also analyzed for Cu, Cr, Zn, Ni, Pb, Co, Mn, Fe, carbonates, Mn-oxides, Fe-oxides and organic matter in order to characterize the geochemical environment and to identify the pollutant sources. Higher Cd concentrations (about 3.5 mg/kg) at depths of 0-10 cm have been detected in the samples of Yenshui, Ell-ren and Potzu rivers, associated to the history of industrial activity in their catchments. According to the linear correlation coefficient (r) between Cd and the geochemical components, carbonates are the primary Cd binding phase in the Ell-ren river (r=0.85), and Cd comes from the same pollutant sources of those containing Cr, Ni, Cu and Zn (r>0.80). Cadmium concentration in the Potzu and Peikang river sediments is probably due to waste deposits rich in Cr and Cu (0.54相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号