首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal würtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140–160 nm and a wall of thickness, 40–50 nm. The length of nanorods and nanotubes varies in the narrow range of 500–600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.  相似文献   

2.
Single crystalline ZnO nanorods with wurtzite structure have been prepared by a simple hydrothermal process. The microstructure and composition of the products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, energy dispersive X-ray spectrum (EDS) and Raman spectrum. The nanorods have diameters ranging from 100 nm to 800 nm and length of longer than 10 µm. Raman peak at 437.8 cm− 1 displays the characteristic peak of wurtzite ZnO. Photoluminescence (PL) spectrum shows a blue light emission at 441 nm, which is related to radiative recombination of photo-generated holes with singularly ionized oxygen vacancies.  相似文献   

3.
In the present work, we reported a novel method for the synthesis of well-dispersed flower-like ZnO microstructures derived from highly regulated, well-dispersed ZnO nanorods by using low temperature (100 °C) hydrothermal process and without using any additional surfactant, organic solvents or catalytic agent. The phase and structural analysis were carried out by X-ray diffraction (XRD) which confirms the high crystal quality of ZnO with hexagonal (wurtzite-type) crystal structure. The morphological and structural analyses were carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which indicate the formation of well-dispersed ZnO nanorods as well as flower-like ZnO. It has been shown that flower-like ZnO is made up of dozen of ZnO nanorods building block units. The high resolution transmission electron microscopy (HRTEM) and their corresponding selected area electron diffraction (SAED) pattern show that both ZnO nanorods and flower-like ZnO microstructures are single crystalline in nature and preferentially grow along [0 0 0 1] direction. Their optical property was characterized by photoluminescence spectroscopy; shows ZnO nanorods have only violet emission and no other emission while flower-like ZnO microstructures have a weak violet emission and a strong visible emission. A plausible growth mechanism of ZnO nanorods as well as flower-like ZnO microstructures has been given.  相似文献   

4.
Pure hexagonal ZnO nanorods were synthesized by low-temperature (90 °C) solvothermal treatment of zinc acetate in 40-80 wt.% hydrazine hydrate aqueous solutions. The products were characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), selected area electron diffraction (SAED), and room temperature photoluminescence (RTPL) spectra. They show a strong UV emission at around 380 nm upon excitation at 360 nm using a Xe lamp at room temperature. The influence on the quality of the nanorods was investigated while the content of the solvent changed. The as-synthesized ZnO nanorods are promising materials for nanoscale optoelectronic devices due to their excellent UV emission properties.  相似文献   

5.
We have synthesized ZnO nanorods on ZnO-coated Si(100) substrates without a metal catalyst by a reaction of a diethylzinc (DEZn) and oxygen (O2) mixture. By adjusting the argon (Ar)/O2 gas flow ratio, we have obtained ZnO nanorods of various densities at a temperature of 450°C. The ZnO nanorods had an average diameter of 30–70 nm, and transmission electron microscopy (TEM) showed a single crystalline structure.  相似文献   

6.
In the paper, a simple microwave-assisted decomposing reaction in the presence of PEG400 has been successfully developed to synthesize ZnO nanorods with 10-25 nm of diameter and 60-200 nm of length. The product was analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and HRTEM. Ultraviolet-visible (UV-vis) absorption peak of ZnO nanorods shows a distinct blue shift from that of the bulk and the Photoluminescence (PL) spectrum exhibits a strong near-band-edge emission at 385 nm. Further experiments have also been designed, and the results show that microwave radiation and surfactant PEG400 all played an important role on the formation of ZnO nanorods.  相似文献   

7.
Well-aligned zinc oxide (ZnO) nanorods were densely grown on Si substrate using ZnO thin-film seed layer without any catalysts and/or additives by a simple solid–vapour phase thermal sublimation technique. The growth mechanism can be interpreted as self-catalyst of zinc particles based on vapour–solid (VS) mechanism. High-resolution transmission electron microscopy (HRTEM) image and selected area electron diffraction (SAED) pattern confirmed that the single-crystalline growth of the nanorods were preferentially along c-axis of hexagonal crystal system. High-crystal quality ZnO nanorods with strong near band edge emission centred at 380 nm can be achieved on Si substrate by the introduction of sufficient oxygen during the nanorod growth processing.  相似文献   

8.
Synthesis of ZnO nanorods from aqueous solution   总被引:1,自引:0,他引:1  
In the present work, crystalline one-dimensional ZnO nanorods were synthesized by a PVP (polyvinylpyrrolidone)-assisted hydrothermal process with zinc acetate as the precursor. The major advantage of this technique is the use of water as the solvent: cheaper and more environmentally friendly than alcohol. The as-synthesized ZnO nanorods have diameters of 50-200 nm and lengths up to 5 μm. X-ray powder diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), Fourier transmission infrared spectroscopy (FTIR) were used to characterize the structural and the chemical features of the ZnO nanorods.  相似文献   

9.
ZnO nanorods with diameters ranging from 25 to 88 nm and with length up to 1 μm were obtained via citric acid-assisted annealing route. The sample was characterized by X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), Raman spectrometer, FTIR spectrophotometer, ultraviolet visible (UV–VIS) spectroscopy, and photoluminescence (PL) spectroscopy. It demonstrates that the sample is composed of ZnO with hexagonal structure and the ZnO nanorods are of excellent optical quality.  相似文献   

10.
在Au点阵模板上磁控溅射ZnO薄膜,然后在O2气氛下1000℃退火制备了ZnO单晶堆垒纳米棒。采用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)和傅立叶变换红外(FTIR)光谱对样品进行分析。结果表明,ZnO纳米棒是由诸多单晶堆垒而成,每个单晶均为六方纤锌矿结构,纳米棒直径在100nm左右。初步探讨了ZnO单晶堆垒纳米棒可能的生长机理。  相似文献   

11.
ZnO纳米棒Al掺杂和A1,N共掺杂的制备技术与光致发光性能   总被引:1,自引:0,他引:1  
采用水热法首先合成了Al掺杂ZnO(AZO)纳米棒,在此基础上通过550℃的氨气氛中退火制备了Al,N共掺杂ZnO(ANZ())纳米棒.运用X射线衍射(XRD),场发射扫描电镜(FESEM),透射电子显微镜(TEM),X射线能谱(EDS)和光致发光(PL)对样品进行了表征与分析.结果表明,制备的AZO和ANZ()纳米棒...  相似文献   

12.
A simple and rapid method has been developed for the preparation of rod-like ZnO nanocrystals via ultrasonic irradiation. The as-synthesized ZnO nanocrystals were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods had an average diameter of 15-70 nm that varied from the ultrasonic operation mode. The results showed that Zn powder played an important role in the synthesis of ZnO nanorods. Through adding a sulfur source in the reaction system, ZnO/ZnS nanocables and ZnS nanotubes could be obtained with continuous ultrasonic irradiation. The formation mechanism of ZnS nanotubes could be attributed to the Kirkendall effect.  相似文献   

13.
Ag/ZnO nanoparticles can be obtained via photocatalytic reduction of silver nitrate at ZnO nanorods when a solution of AgNO3 and nanorods ZnO suspended in ethyleneglycol is exposed to daylight. The mean size of the deposited sphere like Ag particles is about 5 nm. However, some of the particles can be as large as 20 nm. The ZnO nanorods were pre-prepared by basic precipitation from zinc acetate di-hydrate in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. They are about 50–300 nm in length and 10–50 nm in width. Transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) were used to characterize the resulting Ag/ZnO nanocomposites.  相似文献   

14.
ZnO nanorods of 25-100 nm in diameter and 0.2-1 μm in length were fabricated through citric acid assisted annealing process. The microstructure of ZnO nanorods was characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and field-emission scanning electron microscopy, respectively. As a result, it was found that ZnO nanorods were single crystalline and pure. The effects of the growth conditions such as addition of citric acid, annealing temperature on the morphologies of ZnO nanostructures have also been investigated. At the given temperature the length decreased but the diameter increased with addition of the mass of citric acid. With the rising of the calcining heat, the shape of ZnO changed from rod to granule for a given amount of citric acid. Finally, the mechanism for citric acid assisted annealing synthesis of the ZnO nanostructure is discussed.  相似文献   

15.
《Materials Letters》2005,59(14-15):1745-1747
ZnO nanorods and trigonal-shaped ZnO ultrafine particles were synthesized by sonochemical method through the decomposition of zinc acetate dihydrate in paraffin oil. ZnO nanorods and trigonal-shaped ZnO ultrafine particles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and UV–visible spectrophotometer. One strong UV emission peak at 390 nm was observed.  相似文献   

16.
Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of ~99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 μm. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of ~0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells. The synthesized nanostructures were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HR-TEM), X-ray energy dispersive spectroscopy (EDS), and selected area electron diffraction pattern (SAED). The growth mechanism of the ZnO nanostructures is discussed.  相似文献   

17.
A green synthetic approach was presented for the fabrication of ZnO nanorods via the bamboo charcoal-assisted impregnation route with ZnC2O4 colloid in ethanol as the inorganic precursor, followed by calcination at 800 °C for 7 h in air. These ZnO samples were characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is shown that wurtzite hexagonal structured ZnO nanorods were fabricated, with an average diameter of about 300 nm and a length up to several micrometers. Bamboo charcoal played a key role in the formation of ZnO nanorods. The possible formation mechanism for ZnO nanorods was proposed.  相似文献   

18.
In this work, we report the fabrication of high quality single-crystalline ZnO nanorod arrays which were grown on the silicon (Si) substrate using a microwave assisted solution method. The as grown nanorods were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photo-luminescence (PL) and magnetization measurements. The XRD results indicated that the ZnO nanorods are well oriented with the c-axis perpendicular to the substrate and have single phase nature with the wurtzite structure. FE-SEM results showed that the length and diameter of the well aligned rods is about ~ 1 μm and ~ 100 nm respectively, having aspect ratio of 20-30. Room-temperature PL spectrum of the as-grown ZnO nanorods reveals a near-band-edge (NBE) emission peak and defect induced green light emission. The green light emission band at ~ 583 nm might be attributed to surface oxygen vacancies or defects. Magnetization measurements show that the ZnO nanorods exhibit room temperature ferromagnetism which may result due to the presence of defects in the ZnO nanorods.  相似文献   

19.
Flower-like ZnO 3D microstructures composed of nanorods have been successfully prepared via a facile hydrothermal method using p-nitrobenzoic acid as the structure-directing agent. The structures and morphologies of the final products have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM). The possible mechanism for the synthesis of the flower-like ZnO microstructures has been proposed primarily. The gas sensitivity of the flower-like ZnO microstructures has been studied to a series of organic vapors at different operation temperatures and vapor concentrations. The results show that the flower-like ZnO microstructures composed of nanorods have good gas sensor properties to ethanol.  相似文献   

20.
In this study, ZnO nanostructures with different morphologies including nanorods, nanowires, and nanobrushes were synthesized by a simple hydrothermal process without using any structure-directing reagent. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The influence of the preparation parameters on the morphology of ZnO is discussed. Gas-sensing properties of the materials were investigated. The results reveal that all the prepared nanostructured ZnO powders show high response to ethanol, among which, the three-dimensional nanobrushes show the highest response, demonstrating excellent potentiality for ethanol sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号