首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了研究黏接界面细观损伤破坏过程,对其进行了原位拉伸试验,采用扫描电镜(SEM)对试验过程进行了观察,得到了拉伸过程黏接界面细观形貌演化过程SEM图像;采用数字图像相关方法对SEM图像进行了处理,获得了黏接界面原位拉伸过程应变场演化规律。结果表明,黏接界面原位拉伸过程中,外界拉伸应变较小时,损伤主要位于推进剂/衬层界面处,推进剂内部损伤较小;随外界拉伸应变的增大,推进剂内部颗粒脱湿使黏接界面损伤急剧增大,推进剂内部损伤区域不断扩展最终贯穿整个黏接界面是其主要失效模式;SEM与数字图像相关方法结合,可以有效地应用于黏接界面原位拉伸过程变形场的测量,为分析黏接界面细观损伤破坏过程提供了新的方法;原位拉伸过程中,全场的应变随外界拉伸应变的增大而增大,其中εx远远大于εy和εxy;外界拉伸应变从5%增至25%,x方向平均应变εx的极值位于衬层处,从0.07增至1.25;外界拉伸应变从25%增加至28%,推进剂εx急剧增大,黏接界面失效时,推进剂εx约为1.85。  相似文献   

2.
为了从细观角度获得端羟基聚丁二烯(HTPB)推进剂裂纹的扩展特性并分析裂纹的细观破坏机理,通过原位扫描电镜(SEM)对HTPB推进剂三点弯试验裂纹尖端损伤及扩展过程进行了观察,获得了不同变形阶段的裂纹扩展变形形貌,并采用数字图像相关方法分析了图片序列,获得了推进剂裂纹尖端变形场。结果表明,随着推进剂裂纹的不断张开,当挤压位移达到1mm时,裂尖附近应变极值为0.3474,固体颗粒出现脱湿现象,颗粒周边基体受到了较大的应变作用;当挤压位移为2.5mm时,应变极值达0.4168,颗粒和基体界面产生的微裂纹与主裂纹汇聚导致裂纹的扩展。数字图像相关方法和扫描电镜相结合,可用于推进剂在细观尺度下的变形场测量与裂尖扩展过程的破坏机理分析。  相似文献   

3.
NEPE推进剂的细观力学性能研究   总被引:3,自引:0,他引:3  
采用原位拉伸扫描电镜技术对NEPE推进剂的单轴拉伸破坏过程进行了研究.结果表明,固体粒子与黏合剂基体的脱湿是破坏的主要因素.采用数字图像分析方法对此破坏过程进行定量化研究,对图像的分形维数进行了计算,发现随着拉伸破坏过程的进行,分形维数逐渐增大.采用此方法计算的细观结构分形维数可以作为研究NEPE推进剂细观损伤演化的定量指标.  相似文献   

4.
基于内聚力模型,采用界面单元模拟筋条和蒙皮之间的粘接界面,建立了复合材料帽型加筋板结构的有限元模型,探究了复合材料帽型加筋板在四点弯曲载荷作用下的界面应力和脱粘失效问题。结果表明,胶层脱粘是复合材料帽型加筋板的主要失效形式,脱粘失效主要受剪应力的影响,脱粘导致加筋板承载能力下降,加剧了整体结构的损伤。  相似文献   

5.
为克服传统"经验型"材料研发模式和"唯象法"构建材料计算模型的不足,构建了一种基于材料基因工程的复合固体推进剂单轴拉伸性能预估方法;以高氯酸铵/铝/端羟基聚丁二烯(AP/Al/HTPB)推进剂为例,将填料堆积微结构定义为材料基因之一,建立了可反映推进剂配方的填料微结构最小代表性单元,分别确定了决定填料、基体、填料-基体界面力学性能的材料基因,并建立了材料基因与推进剂单轴拉伸性能之间的构效关系,获得了单轴拉伸条件下推进剂内部的损伤演变规律及应力—应变响应。结果表明,AP/Al/HTPB推进剂的应力—应变曲线可分为弹性段、黏弹性段和损伤段3个阶段;基体的黏弹性形变和填料脱湿会导致推进剂黏弹性模量下降;应变大于15.37%时,脱湿首先发生在粗粒径颗粒上方,随后以先快速、后平稳的趋势沿粗颗粒周向扩展;应变大于21.19%时,中等粒径颗粒开始脱湿;在0~25%的应变范围内细颗粒与基体始终黏接完好。  相似文献   

6.
建立了预测含初始脱粘缺陷复合材料加筋壁板渐进压溃响应的数值分析模型。该模型综合考虑了复合材料层合板的纤维失效、基体失效和纤维-基体剪切失效三种典型的面内损伤模式,并通过编写用户自定义材料子程序VUMAT实现面内失效类型的判断和相应材料性能的折减;在壁板和筋条连接界面应用虚裂纹闭合技术(VCCT)计算层间裂纹前缘的应变能释放率,并结合B-K混合模式准则控制缺陷的起裂以模拟脱粘的扩展演化过程;采用显式动力学方法准静态分析结构在压缩载荷下的屈曲、后屈曲直至最终压溃的响应过程。数值分析结果与文献试验、数值结果吻合良好,验证了模型的合理性和有效性,并详细研究了复合材料脱粘加筋壁板的损伤演化过程和渐进压溃行为。  相似文献   

7.
应变加载历史对推进剂力学性能的影响   总被引:5,自引:1,他引:4  
对经不同应变幅值及不同次数往复拉伸后的复合固体推进剂试件进行单向拉伸试验,结合扫描电子显微镜断面观察与往复过程中原位观察结果,分析了应变加载历史对推进剂力学性能的影响。结果表明,颗粒与基体之间的脱湿程度由应变决定,往复拉伸应变幅值控制着损伤的范围,存在一个应变阈值,当往复拉伸应变幅值超出此阈值时,往复拉伸造成的损伤会影响推进剂的整体力学性能。  相似文献   

8.
对复合固体推进剂紧凑拉伸试件进行了拉伸动态观察试验,获得其变形过程的图片序列,采用数字图像相关方法得到了不同拉伸位移下裂纹尖端附近位移场及应变场。结果表明:采用数字图像相关方法可有效获取裂纹尖端的位移场和应变场以及它们的变化规律,为复合推进剂的变形破坏分析和数值模拟结果验证提供基础数据。  相似文献   

9.
NEPE推进剂低温力学性能研究   总被引:1,自引:0,他引:1  
为分析硝酸酯增塑聚醚(NEPE)推进剂低温力学性能,通过低温和低温恢复常温单轴拉伸试验,考察了低温条件下NEPE推进剂力学性能的变化情况。采用原位拉伸扫描电镜和环境扫描电镜分别观察了推进剂拉伸过程中和拉断后的微观表面形貌,对比分析了推进剂的动态力学性能。结果表明:在低温拉伸条件下,NEPE推进剂主要表现为基体撕裂;而在低温恢复常温拉伸条件下,主要以颗粒与基体的"脱湿"破坏为主。在低温和低温恢复常温条件下的推进剂力学性能变化不大,结合定应变实验结果,表明NEPE推进剂低温下具有较强的抵抗损伤能力。  相似文献   

10.
采用原位拉伸扫描电镜研究了GAP推进剂的损伤演化过程,并结合数字图像技术和分形维数的方法对裂纹演化进行了定量分析。结果表明,GAP推进剂在拉伸过程中的破坏首先发生在大粒径的AP颗粒集中分布区域,紧邻AP颗粒间少量的黏合剂基体断裂及脱粘;然后再到分散分布区域的AP颗粒及其附近位置处与黏合剂基体的脱粘;拉伸前期裂纹增加较为迅速,其后缓慢增加直到推进剂整体断裂;拉伸速率越慢,拉伸前期裂纹增加越快,且整个拉伸过程损伤程度越大;其中,拉伸速率为0.05 mm/min的拉伸过程损伤程度最为显著。  相似文献   

11.
刘铁军  王峰会  赵翔 《粘接》2015,(2):47-50
对用于太阳能飞机蒙皮的柔性薄膜太阳能电池与碳纤维复合材料层合板胶接结构,进行了静力拉伸性能的数值模拟。分别用内聚力模型和弹塑型材料模型描述了粘接层与太阳能电池的力学行为;用实现层合UMAT板的渐进失效,研究了粘接材料性能对太阳能电池损伤的影响。结果表明,界面开胶和电池组件塑型损伤先于整体结构破坏,粘接材料性能对太阳能电池损伤有显著影响。  相似文献   

12.
功能器件集成于结构材料内是实现多功能结构一体化设计的一个重要途径。然而集成后往往导致结构系统中产生几何不连续界面,成为失效的起点,是降低原有结构性能和破坏结构完整性的主要原因。本文通过试验观察及数值分析探讨了内埋元件对其复合材料结构完整性影响的一些关键因素。拉伸试验中采用声发射技术并结合不同载荷阶段下的内部损伤观察,确立了损伤演化与拉伸性能退化的关系。结果表明,埋置件与复合材料间的分层损伤是导致结构拉伸性能退化的主要机制,分层扩展阻力取决于与埋置件相邻层的纤维取向角度。数值分析中利用有限元软件ABAQUS建立了二维平面应变有限元模型,分析了埋置件附近的应力分布,并基于断裂力学理论分析了分层损伤扩展行为。数值结果表明,引入不同临界能量释放率值,可以很好地模拟"裸界面"与"摩擦界面"对裂纹扩展速率的不同效应。  相似文献   

13.
为分析含脱粘缺陷复合材料夹层结构侧压破坏载荷与破坏模式,采用损伤起始判据和损伤演化准则模拟面板与胶层的损伤及破坏过程,建立了考虑材料失效的三维渐进损伤分析模型。针对两种典型复合材料夹层结构,基于所建立的模型完成了破坏载荷预估和破坏模式分析,并将有限元分析与试验结果进行了对比。结果表明:面板较弱时,中部含圆形脱粘缺陷夹层结构侧压破坏模式通常为材料失效压缩破坏,随着载荷的增加,面板中部及脱粘区域周围发生损伤并沿板宽度方向向两侧扩展,直至材料完全损伤发生破坏;面板较强时,侧压破坏模式通常为整体失稳破坏,屈曲后结构基本不再具有继续承载的能力而迅速发生破坏。分析结果破坏载荷预估值与试验吻合较好,破坏模式与试验结果一致。  相似文献   

14.
通过平纹编织碳纤维增韧碳化硅复合材料的拉伸、压缩和剪切的单向与循环加–卸载实验,分别研究了材料在拉伸载荷、压缩载荷和剪切载荷作用下的力学性能和损伤演化过程。结果表明:在压缩载荷作用下,材料的压缩性能下降很小,基体开裂,纤维界面脱粘和纤维束断裂为主要的失效机理;材料在拉伸和剪切载荷作用下,损伤演化过程有所区别。材料拉伸损伤演化经历损伤初始阶段、损伤加速阶段和损伤减缓阶段,为韧性断裂,损伤破坏主要表现为:基体开裂、横向纤维束开裂,界面层脱粘、层间剥离和纤维断裂;在剪切载荷作用下,经历损伤加速阶段和损伤减缓阶段,基体开裂、界面层脱粘和纤维断裂为主要的损伤机理,试样最后在最窄截面位置形成平断面。基于实验研究结果,采用回归分析方法,分别给出了材料在拉伸载荷和剪切载荷作用下损伤演化方程式。  相似文献   

15.
计操  周国发 《中国塑料》2021,35(3):59-66
针对金属基聚合物复合材料易诱发界面剥离损伤失效的共性问题,研究了通过多层复合组装注射成型,在聚合物复合层与粘接层界面形成短纤维桥接,实现复合界面强化。基于内聚力剥离损伤模型,构建了短纤维桥接强化界面剥离裂纹扩展断裂失效过程的模拟仿真技术,模拟建立了界面剥离裂纹快速失稳扩展断裂损伤失效临界载荷—桥接纤维特性—界面剥离断裂韧性(损伤启裂应力T0和临界应变能释放率Gc)的协同关联理论,诠释了短纤维桥接界面强化机理,提出了预防短纤维桥接强化界面诱发剥离裂纹快速失稳扩展失效的设计准则。结果表明,当桥接纤维密度为20根/mm2,可使其临界载荷增加55.9 %,临界载荷受控于桥接纤维密度、初始预裂纹面积、损伤启裂应力和临界应变能释放率,且与桥接纤维密度、损伤启裂应力和临界应变能释放率呈正关联关系,而与初始预裂纹面积呈负关联关系。  相似文献   

16.
复合材料胶接结构损伤变形和演化行为的实时表征对其服役的安全性和可靠性评估具有重要的意义。结合数字图像相关(Digital Image Correlation,简称"DIC")和声发射(Acoustic Emission,简称"AE")技术,研究循环拉伸加载条件下复合材料单搭接界面的损伤变形与破坏行为。依据单向拉伸失效载荷均值,取准静态破坏载荷的70%和80%分别进行循环拉伸加载实验。通过不同阶段复合材料胶接界面的损伤变形场、应变场信息及演化过程中获取的AE信号,分析循环加载下复合材料单搭接界面损伤破坏的力学机制与实时变形和AE特征信号的对应关系。结果表明,复合材料单搭接试件损伤破坏的实时微位移场特征和AE相对能量、撞击累积数及幅度谱等反映了胶接界面微裂纹的萌生及扩展行为。随应力水平的升高,复合材料单搭接试件破坏前的循环次数呈递减趋势。  相似文献   

17.
HTPB推进剂的低温力学性能   总被引:3,自引:0,他引:3  
通过低温和低温恢复常温单轴拉伸试验,考察了低温条件下HTPB推进剂力学性能的变化情况,用SEM扫描电镜观察了推进剂拉伸断面形貌,分析了所得HTPB推进剂的拉伸应力-应变曲线和力学性能特性。结果表明,在低温拉伸条件下,HTPB推进剂主要表现为基体撕裂和颗粒脆断,而在低温恢复常温拉伸条件下,主要以"脱湿"破坏为主。推进剂的低温拉伸曲线具有明显的屈服现象发生,说明推进剂的屈服现象与低温有关。推进剂在低温和低温恢复常温条件下的最大抗拉强度、弹性模量和延伸率等力学性能呈现出不同的变化规律。  相似文献   

18.
对含损伤复合材料加筋板进行了强度分析及修补研究。建立了复合材料层合加筋壁板的有限元分析模型,该模型采用界面单元以有效模拟筋条和壁板之间的连接界面及层板分层界面,连接界面和复合材料层板分别采用Quads和Hashin失效准则作为失效判据,引入材料刚度退化模型,采用非线性有限元方法,研究了复合材料加筋壁板在压缩载荷下的破坏过程。建立了筋条脱粘面积、层板分层面积与结构承载能力之间的关系,对不同损伤加筋板进行了修补研究,研究结果可为合理制定复合材料构件缺陷验收标准和结构修理容限提供分析依据。  相似文献   

19.
张清芳  洪鹤轩  沈璐 《硅酸盐通报》2022,41(7):2283-2291
湿筛混凝土通常用来代替由于骨料粒径较大而不便开展物理试验的水工全级配混凝土。为了研究加载速率对湿筛混凝土力学性能及破坏形态的影响,从细观角度出发,运用颗粒流离散元软件PFC2D建立湿筛二级配混凝土细观数值试件,根据拟静态单轴压缩(应变速率10-5 s-1)试验数据标定出数值试件中砂浆颗粒之间、粗骨料颗粒之间及砂浆颗粒与粗骨料颗粒接触面之间的细观参数,进而开展应变速率为10-4 s-1、10-3 s-1、10-2s-1的动态加载并进行动态力学性能及破坏形态的数值模拟和机理分析。结果表明,不同应变速率下试件的应力-应变曲线形状相近,峰值应力随着应变速率的增加而增大,增长率为7.3%~37.9%,峰值应力处应变增大幅度不大。试件破坏形态与物理试验现象吻合较好,随着应变速率的增加,裂缝数量不断增加,裂缝分布趋于均匀,裂缝数量增长率平均为峰值应力增长率的4.2倍。此外,随着应变速率的增加,数值试件内部...  相似文献   

20.
郭洪涛  曹付齐 《粘接》2013,(6):47-49,52
介绍了固体火箭发动机贮存过程中衬层/推进剂界面脱粘的机理和影响因素,着重分析了老化、组分迁移和贮存环境对衬层/推进剂界面脱粘的影响,并提出了缓解界面脱粘的主要措施,认为在衬层和推进剂间增设阻挡层和改进衬层的抗迁移能力是缓解界面脱粘的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号