首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy transfer between Ce3+ and Tb3+ dopants in alkaline earth (Ba, Sr or Ca) sulphate phosphors is investigated. Among these three phosphors, CaSO4:Ce3+,Tb3+ showed maximum Tb3+ green emission on excitation with UV light. Photoluminescence measurements reveal that the emission intensity from CaSO4:Ce3+,Tb3+ is comparable with that of the commercial green lamp phosphor Ce0.65Tb0.35MgAl11O19. Optimum concentrations of dopants in CaSO4:Ce3+,Tb3+ are 0.2 mol% each and the optimum sintering treatment following re-crystallisation is 600 °C for 1 h duration. The effect of charge compensator in all the three phosphors is also studied.  相似文献   

2.
Aluminum oxynitride(AlON) phosphors co-doped by Tb3+ and Ce3+ were synthesized by nitridation of the precursor which was co-precipitated from Al(NO3)3 solution and nanosized carbon black at 1750 °C for 2 "hrs" in flowing nitrogen atmosphere. The obtained AlON based powders were composed of polycrystalline spinel typed particles with sizes in the range of 1-3 μm. Under an excitation of 275 nm, it was found that co-doping of Ce3+ could drastically enhance the luminescence of AlON:Tb3+ powder by energy transfer. The product with 0.5 mol% Ce3+ and 0.67 mol% Tb3+ exhibited a strong broad green emission at 540 nm. The critical quenching concentration of Tb3+ in AlON:0.5 mol% Ce3+/xmol% Tb3+ phosphor was determined to be 0.67 mol%. It was supposed that the mechanism of concentration quenching of Tb3+ in AlON:0.5 mol% Ce3+ xmol% Tb3+ phosphor was dipole-dipole interaction.  相似文献   

3.
《Materials Research Bulletin》2013,48(11):4749-4753
A series of single-phased emission tunable NaBa4(BO3)3:Ce3+, Tb3+ phosphors were synthesized by solid-state reaction. The crystal structure, photoluminescence properties, concentration quenching and energy transfer of NaBa4(BO3)3:Ce3+, Tb3+ were systematically investigated. The wavelength-tunable bluish-green light can be realized by coupling the emission bands centered at 425 and 543 nm ascribed to the contribution from Ce3+ and Tb3+, respectively. The energy transfer from Ce3+ to Tb3+ in NaBa4(BO3)3 host was studied and demonstrated to be a resonant type via a dipole–dipole interaction mechanism. The energy transfer efficiency (Ce3+  Tb3+) obtained by decay curves was consistent with the result calculated by the emission intensity, which gradually increased from 0% to 84.5% by increasing the Tb3+ doping content from 0 to 0.45. The results indicate that the NaBa4(BO3)3:Ce3+, Tb3+ phosphors have potential applications as an ultraviolet-convertible phosphor due to its effective excitation in the ultraviolet rang.  相似文献   

4.
A novel phosphor BaY2Si3O10 (BYSO): Ce3+, Tb3+ was synthesized by the conventional solid-state reaction, which displays tunable color emission from blue to blue-green under ultraviolet excitation by adjusting the radio of Ce3+ and Tb3+ appropriately. Photoluminescence characteristics were carefully investigated. We demonstrate the existence of efficient energy transfer from Ce3+ to Tb3+ in BaY2Si3O10: Ce3+, Tb3+ phosphor. The energy transfer Ce3+ → Tb3+ was proved to be governed by dipole–quadrupole interaction.  相似文献   

5.
Sr3SiO5 phosphors co-doped with Eu2+ and Tb3+ were prepared by a conventional solid-state reaction method. The prepared Sr3SiO5:Eu2+,Tb3+,Li+ phosphors had characteristic luminescent spectra excited under near-UV excitation in which both the broadband spectrum assigned to Eu2+ and the line spectrum assigned to Tb3+ are observed, although Tb3+ is inactive with this photon energy in general. For Eu2+–Tb3+ codoped Sr3SiO5, energy transfer process takes place and the mechanism is ascribed to the overlap between the shorter Eu2+ luminescence band from the Sr3SiO5 crystal structure with two Sr sites and 5D4 energy level of Tb3+ ion. Due to the energy transfer, PL intensity of Eu2+ emission increased about 26 %. We suggest that this enhancement mechanism could shed light on the potential applications in white light-emitting diodes excited by near-UV light. In addition, the emission peak position near the orange region indicates that our system is a step towards a new class of wavelength sources for artificial lighting with improved PL intensity and lower energy consumption.  相似文献   

6.
The luminescence properties of green emitting strontium aluminate phosphor SrAl12O19 doped and co-doped with Mn2+ and Tb3+ were studied using synchrotron radiation. It is shown that Tb3+, exhibiting a strong absorption band in the vacuum-ultraviolet (VUV), provides sensitisation of Mn2+ emission in this host. The observed sensitisation effect of the Tb–Mn pair can be used for improving the efficiency of VUV phosphors.  相似文献   

7.
《Advanced Powder Technology》2020,31(4):1633-1642
A series of Tb, Eu single or co-doped Zn4B6O13 phosphors with tetrahedral morphology were synthesized by facile hydrothermal method. The influences of reaction temperature and the pH value of the reaction system on the structures and compositions of product were also investigated, in which four kinds of zinc borates with different structures and compositions (Zn4B2O7·H2O, Zn4B6O13, Zn(H2O)B2O4·0.12H2O, and H(Zn6O2(BO3)3)) were obtained. A possible growth mechanism of tetrahedral morphology of Zn4B6O13 has been proposed according to reaction time. The obtained samples were characterized by XRD, EDS, SEM, TEM, XPS, BET, DR, PL and QY. XPS results indicate that Eu2+ and Tb4+ are present in Tb/Eu co-doped Zn4B6O13, which might be generated from charge transfer between Tb3+ and Eu3+. The PL results shows that Eu3+, Tb3+ ion single-doped Zn4B6O13 microstructure exhibit orange and green emission under ultraviolet excitation, respectively. Compared to Eu3+ and Tb3+ single doped Zn4B6O13 phosphors, the Eu/Tb co-doped Zn4B6O13 phosphors showed stronger blue emission of Eu2+. These results imply that the tetrahedral morphology of Eu3+, Tb3+ ion single-doped and Eu2+/3+/Tb3+/4+ co-doped Zn4B6O13 phosphors have the promise application for nano/micro-optical functional devices.  相似文献   

8.
A spectroscopic investigation of sodium germanate glasses activated with Ce3+, Tb3+ and Ce3+/Tb3+ is carried out by analyzing their photoluminescence spectra and decay times. Non-radiative energy transfer from Ce3+ to Tb3+ is observed upon near-UV excitation at 310 nm (peak emission wavelength of AlGaN-based LEDs). The non-radiative nature of this energy transfer is inferred from the increase in the decay rate of the Ce3+ emission when the glass is co-doped with Tb3+. From an analysis of the Ce3+ emission decay time curve it is inferred that an electric dipole–quadrupole interaction might to be the dominant mechanism for the Tb3+ emission sensitized by Ce3+. Energy transfer from Ce3+ to Tb3+ leads to a simultaneous emission of these ions in the blue, green, yellow and red, resulting in white light with CIE1931 chromaticity coordinates, x = 0.30 and y = 0.32, which correspond to cold white light with a colour temperature of 7320 K and very small deviation from the Planckian black-body radiator locus (0.005).  相似文献   

9.
The present investigation aims to demonstrate the potentiality of Tb3+ and Ce3+ co-doped Ca4Y6(SiO4)6O phosphors. By incorporation of Ce3+ into Ca4Y6(SiO4)6O: Tb3+, the excitation band was extended from short-ultraviolet to near-ultraviolet region. The energy transfer from Ce3+ to Tb3+ in Ca4Y6(SiO4)6O host was investigated and demonstrated to be a resonant type via a dipole–dipole mechanism with the critical distance of 10.2 Å. When excited by 352 nm, Ca4Y6(SiO4)6O: Ce3+, Tb3+ exhibited a brighter and broader violet-blue emission (421 nm) from the Ce3+ and an intense green emission (542 nm) from the Tb3+. Combining the two emissions whose intensities were adjusted by changing the doping levels of the co-activator, an optimized white light with chromaticity coordinates of (0.278, 0.353) is generated in Ca4Y6(SiO4)6O: 2% Ce3+, 8% Tb3+, and this phosphor could be potentially used in near-ultraviolet light-emitting diodes.  相似文献   

10.
《Optical Materials》2013,35(12):1994-1997
95SiO2–5LaF3 sol–gel derived nano-glass–ceramics single doped with Ce3+ or Tb3+ and co-doped with Ce3+–Tb3+ were synthesized by thermal treatment of precursor glasses. Precipitation of LaF3 nanocrystals during ceramming process was confirmed by X-ray diffraction with mean size ranging from 12 to 15 nm. An exhaustive spectroscopic analysis has been carried out. As a result, it was found that the green emission of Tb3+ ions was greatly enhanced through down shifting process, due to efficient energy transfer from Ce3+ to Tb3+ ions in the glass–ceramics, which is favored by the reduction of the interionic distances when the dopant ions are partitioned into LaF3 nanocrystals. These results suggest the use of these materials to improve the efficiency of solar cells.  相似文献   

11.
A novel halloysite@YF3: Ce3+, Tb3+ anocomposite with strong luminescent properties was designed and synthesized by a facile direct precipitation strategy. Owing to the halloysite as a support, it can significantly prevent the aggregation of YF3:Ce3+,Tb3+ and the distribution of YF3:Ce3+,Tb3+ on halloysite was highly uniform. Importantly, due to the unique surface-interface-dielectric multiple confinement (SIDMC) effects, the as-harvested halloysite@YF3:Ce3+,Tb3+ nanocomposite exhibited excellent luminescent performance. Compared with YF3:Ce3+,Tb3+, the luminescence intensity of halloysite@YF3:Ce3+,Tb3+ nanocomposite is significantly enhanced by about 6 times under 255 nm excitation. However, the fluorescence lifetime of halloysite@YF3:Ce3+,Tb3+ nanocomposite (7.21 ms) is shorter than that of YF3:Ce3+,Tb3+ nanoparticles (8.34 ms). This finding indicated that halloysite can change the luminescent properties of YF3:Ce3+,Tb3+ nanoparticles through an SIDMC effect. The combination of halloysite and YF3:Ce3+,Tb3+ nanoparticles not only endowed halloysite with special properties, and effectively tuned the luminescent properties of YF3:Ce3+,Tb3+ nanoparticles, thereby improving the utility of halloysite and YF3:Ce3+,Tb3+ nanoparticles. The research supplies an insight on the development of natural mineral-based luminescent materials, and hopefully it could promote them application in many fields.  相似文献   

12.
Color-tunable blue to bluish white-emitting Ce3+/Dy3+ co-doped GdOBr phosphors have been synthesized by the conventional solid-state method. The phase structures, luminescent properties and energy transfer process were discussed in detail. Broad-band absorption originating from the f-d transition of Ce3+ can be found for the as-prepared GdOBr:Ce3+,Dy3+ phosphor, and color-tunable blue to bluish white emission can be realized owing to the energy transfer between Ce3+ and Dy3+. The energy transfer mechanism is demonstrated to be the dipole–dipole process. The energy transfer efficiency increases with increasing Dy3+ concentrations. The results indicate that Ce3+/Dy3+-activated GdOBr phosphors may be potential for phosphor-converted white-light UV-LEDs.  相似文献   

13.
A spectroscopy investigation of Ce3+ and Tb3+ ions in sodium–zinc–aluminosilicate glasses is performed using the photoluminescence technique. Blue–white light, with x = 0.24 and y = 0.24 CIE chromaticity coordinates, is obtained for the Tb3+ singly-doped glass excited at 351 nm. When the sodium–zinc–aluminosilicate glass is co-doped with Ce3+ and Tb3+ a non-radiative energy transfer from Ce3+ to Tb3+ ions is observed upon 320 nm excitation. From an analysis of the cerium emission decay curve, the Ce3+ → Tb3+ energy transfer microscopic parameter and efficiency are obtained. Different concentrations of Ce3+ and Tb3+ ions in the glass host gives rise to blue and blue–green emissions, with different CIE coordinates. Optical waveguides were produced in the samples by Ag+–Na+ ion-exchange, and their characterization is presented.  相似文献   

14.
Phase pure Ce3+ and Tb3+ singly doped and Ce3+/Tb3+ co-doped Ba3GdNa(PO4)3F samples have been synthesized via the high temperature solid-state reaction. The crystal structures, photoluminescence properties, fluorescence lifetimes, thermal properties and energy transfer of Ba3GdNa(PO4)3F:Ce3+,Tb3+ were systematically investigated. Rietveld structure refinement indicates that Ba3GdNa(PO4)3F crystallizes in a hexagonal crystal system with the space group P-6. For the co-doped Ba3GdNa(PO4)3F:Ce3+,Tb3+ samples, the emission color can be tuned from blue to green by varying the doping concentration of the Tb3+ ions. The intense green emission was realized in the Ba3GdNa(PO4)3F:Ce3+,Tb3+ phosphors on the basis of the highly efficient energy transfer from Ce3+ to Tb3+. Also the energy transfer mechanism has been confirmed to be quadrupole–quadrupole interaction, which can be validated via the agreement of critical distances obtained from the concentration quenching (13.84 Å). These results show that the developed phosphors may possess potential applications in near-ultraviolet pumped white light-emitting diodes.  相似文献   

15.
The Ce3+ and Tb3+ co-doped Ln2Si2O7 (Ln = Y, Gd) samples were prepared by sol-gel method. Structure characterization of the phosphor was carried out by X-ray diffraction. The luminescence properties of samples were analyzed by measuring the excitation and emission spectra. It was observed that excitation energy can transfer mutually between Ce3+ and Tb3+ in GPS: Ce3+, Tb3+ samples, while in Y2Si2O7 :Ce3+, Tb3+ samples the energy transfer only progresses from Ce3+ to Tb3+. Based on the energy level diagrams of respective Ce3+, Tb3+ and Gd3+ ion, the detailed pathways for energy transfer are explained.  相似文献   

16.
The rare earth nano phosphors can meet the challenging demand for new functional devices but their luminescence is always poor. Here we report on a simple method to prepare uniform LaPO4:Ce3+,Tb3+ sphere-like nano aggregates from the precipitated nano phosphor crystallites without using any additive. The spontaneous aggregation is induced and controlled only by the suspension pH conditions. It is found that the 100 nm spherical aggregates can significantly improve the green emissions of the LaPO4:Ce3+,Tb3+ nano particles. The intensity of the aggregates can be about 10 times as that of the 80 nm-sized individual ones. This study may provide a useful yet convenient strategy in the improvement and application of nano phosphors.  相似文献   

17.
《Materials Research Bulletin》2006,41(8):1468-1475
The spectroscopic properties in VUV–vis range for phosphors calcium and gadolinium double borate Ca3Gd2(BO3)4 doped with rare-earth ions Ce3+, Sm3+, Eu3+ and Tb3+ were investigated. The host-related absorption, the f–d transitions of Ce3+ and Tb3+, as well as the charge transfer transitions of Sm3+ and Eu3+ in the host lattice are assigned and discussed. The CIE chromaticity coordinates for Eu3+- and Tb3+-activated phosphors are calculated.  相似文献   

18.
A series of Ce3+-activated Tb3Al5O12 green-yellow phosphors were synthesized using solid state reaction method. The X-ray diffraction peaks of the synthesized phosphor were well matched to the Tb3Al5O12 reference peak data. As the addition amount of AlN increase, the relative intensity of diffraction peak increase. But, the addition amount of AlN is over 0.3 mol, the second phase TbAlO3 diffraction peaks increase. When the addition amount of AlN is 0.3 mol, PL shows the highest emission efficiency. These results were explained by the reducing atmosphere made using AlN. The highest emission intensity was observed when the Ce3+ concentration is 0.25 mol. The emission intensity of the Tb2.75Al5O12:Ce0.253+ phosphors were increased by adding BaF2 and KNO3 as a flux. The yellow emitting Tb3Al5O12:Ce3+ phosphors obtained could be applied as white LEDs.  相似文献   

19.
Tb3+-doped SrWO4 phosphors with a scheelite structure have been prepared by hydrothermal reaction. X-ray powder diffraction, field-emission scanning electron microscopy, photoluminescence excitation and emission spectra and decay curve were used to characterize the resulting samples. Scanning electron microscopy image showed that the obtained SrWO4:Tb3+ phosphors appeared to be nearly spherical and their sizes ranged from 1 to 3 μm. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under ultraviolet light excitation. Because 12 at.% SWO4:Tb3+ phosphor exhibits intensive green emission under 254 nm excitation in comparison with the commercial green fluorescent lamp phosphor (LaPO4:Ce,Tb), the excellent luminescence properties make it a new promising green phosphor for fluorescent lamps application.  相似文献   

20.
Blue-green emission of ZrO2:Ce3+ phosphor, prepared by solid-state reaction, is demonstrated. The phosphor presents a strong and broad photoluminescence band centered at 496 nm with excitation at 291 nm. The optimized Ce content is 2.5 mol% for the strongest emission of ZrO2:Ce3+ phosphors prepared without B2O3. The PL intensity is enhanced by at least 3 dB by adding 5.0 mol% B2O3 within the ZrO2:Ce3+ containing 5.0 mol% Ce during synthesis. Increase of the B2O3 flux effectively induces the Ce ions to substitute the Zr ions in ZrO2 lattice and causes the ZrO2 lattice distortion. The formation of Ce0.75Zr0.25O2 compound within the ZrO2:Ce3+ occurred when the Ce content is greater than or equal to 2.5 mol% for the phosphors prepared without B2O3 and leads to a degradation of the phosphor PL intensity due to the host effect. The addition of B2O3 during the preparation of phosphors containing Ce ions lower than or equal to 5.0 mol% essentially restrains the Ce0.75Zr0.25O2 formation and then enhances the blue-green PL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号