首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We report, for the first time, binary ZnO/MnWO4 nanocomposites with p-n heterojunction fabricated by a simple ultrasonic-calcination route. The phase structure, morphology, and optical along with textural properties were comprehensively characterized. The photocatalytic performance was studied via degradations of rhodamine B, methyl blue and methyl orange (RhB, MB, MO), and fuchsine pollutants under visible-light illumination. The ZnO/MnWO4 nanocomposites exhibited better photocatalytic performance than their single components and the nanocomposite with 30?wt% MnWO4 showed the highest activity. Photocatalytic performance of this nanocomposite is 22.5, 17.7, 26.8, and 23.9 times higher than that of the ZnO sample in degradations of RhB, MB, MO, and fuchsine dyes, respectively. The improved photocatalytic performance was ascribed to the formation of p-n heterojunction between ZnO and MnWO4 with high charge separation efficiency as well as strong visible-light absorption ability. The possible mechanism for the improved photocatalytic performance was proposed. This study revealed that the novel ZnO/MnWO4p-n heterojunction can act as a promising visible-light-active photocatalyst for environmental applications.  相似文献   

2.
Herein, magnetically recoverable g-C3N4/Fe3O4/Ag2WO4/AgBr (gCN/M/AgW/AgBr) nanocomposites, as greatly efficient visible-light-active photocatalysts, were fabricated by successive decoration of Fe3O4, Ag2WO4, and AgBr over g-C3N4 (gCN) and they were characterized by XRD, EDX, SEM, TEM, HRTEM, UV–vis DRS, FT-IR, PL, TG, and VSM analysis. Visible-light-induced photocatalytic performances were studied by degradations of RhB, MB, MO, and fuchsine pollutants. It was confirmed that the nanocomposites are effective in the reduction of e?/h+ recombination through the matched interactions between energy bands of gCN, Fe3O4, Ag2WO4, and AgBr semiconductors. The highest photocatalytic degradation efficiency was observed for the gCN/M/AgW/AgBr (30%) nanocomposite when it was refluxed for 30?min. Activity of this nanocomposite is almost 21, 41, 94, and 10-folds greater than those of the gCN toward the degradations of RhB, MB, MO, and fuchsine pollutants, respectively. Additionally, a mechanism for the superior photocatalytic performances was proposed using reactive species scavenging experiments and characterization results.  相似文献   

3.
In this study, ternary ZnO/BiOBr/C-Dots photocatalysts were successfully prepared by a simple strategy. Then, their characteristics such as structure, morphology, chemical, optical, textural, and photocatalytic performances were fully investigated. This study demonstrated that the ZnO/BiOBr/C-Dots nanocomposites showed remarkably increased photocatalytic performances compared with the ZnO and ZnO/BiOBr samples. In decolorization of RhB upon visible light, the highest activity was obtained when the volume of C-Dots was 0.25?mL, which was about 39.7 and 2.7?times premier than the ZnO and ZnO/BiOBr photocatalysts, respectively. In the ternary nanocomposites, the increased performance was mainly ascribed to the formed heterojunction between the counterparts, up conversion characteristics of C-Dots, and visible-light harvesting ability of BiOBr. The reactive species trapping experiments proved that O2? was the major species involved in the photocatalysis reaction. At last, the ternary nanocomposite displayed remarkable stability for recycling runs.  相似文献   

4.
Novel g-C3N4/Fe3O4/CuWO4 nanocomposites, as magnetic visible-light-driven photocatalysts, fabricated through a simple refluxing-calcination process. The synthesized photocatalysts were characterized by a series of techniques including XRD, EDX, SEM, TEM, HRTEM, FT-IR, TGA, BET, UV–vis DRS, PL, and VSM. The results showed that heterojunctions are formed between g-C3N4, Fe3O4, and CuWO4, which favor suppression of the photogenerated electron/hole pairs from recombination. The resultant g-C3N4/Fe3O4/CuWO4 (30%) sample exhibited superior photocatalytic performance. The degradation rate constants on the g-C3N4/Fe3O4/CuWO4 (30%) nanocomposite were almost 10.5, 17, 12.5, and 42.5 times higher than those of the pristine g-C3N4 for degradations of RhB, MB, MO, and fuchsine, respectively. Moreover, the photocatalyst was magnetically separated and recycled with negligible loss in the activity, which is important for the sustainable photocatalytic processes. Thus, the ternary nanocomposite could have potential applications in different photocatalytic processes.  相似文献   

5.
A series of novel ternary TiO2/MgBi2O6/Bi2O3 nanocomposites were synthesized by a facile hydrothermal method. The ternary nanocomposites were characterized by XRD, FESEM, HRTEM, EDX, PL, EIS, Photocurrent, UV–vis DRS, BET, XPS, Raman, and FT-IR analyses. The photocatalytic performance of TiO2 for the degradation of tetracycline antibiotic after combining with MgBi2O6/Bi2O3 was significantly improved, which is 46.1 and 18.5 times higher than pristine TiO2 and MgBi2O6/Bi2O3 photocatalysts, respectively. Furthermore, the ternary photocatalyst efficiently degraded MO, RhB, and MB dye pollutants, which is 22.5, 30.4, and 30.0 as high as TiO2 and 11.2, 14.4, and 17.8 folds larger than MgBi2O6/Bi2O3 photocatalysts, respectively. The photoluminescence and electrochemical analyses confirmed promoted separation and facile transfer of the charges thanks to construction of n-n-p heterojunctions among n-TiO2, n-MgBi2O6, and p-Bi2O3 components and more production of charge carriers due to integration of small band gap MgBi2O6 and Bi2O3 components with wide band gap TiO2.  相似文献   

6.
Herein, hydrogen peroxide activated graphitic carbon nitride (agCN) was combined with Fe3O4 and Bi2S3 to fabricate agCN/Fe3O4/Bi2S3 nanocomposites via facile refluxing method, as visible-light-induced photocatalysts for photodegradations of anionic and cationic dyes such as MO, RhB, MB, and photoreduction of Cr(VI). The fabricated samples were explored by XRD, EDX, XPS, TGA, SEM, TEM, HRTEM, VSM, PL, FT-IR, BET, and UV-vis DRS. Photocatalytic activity of the nanocomposite with 20% of Bi2S3 was 16.6, 40.4, 19.5, and 12.5 times more than that of the pristine gCN in removal of RhB, MB, MO, and Cr(VI), respectively. A plausible photocatalytic mechanism on the agCN/Fe3O4/Bi2S3 nanocomposites was proposed by construction of n-n heterojunction between gCN and Bi2S3. Also, stability of the magnetic hybrid was characterized through cyclic photocatalytic tests.  相似文献   

7.
An efficient visible light photocatalyst has been prepared from TiO2 nanoparticles and a partly conjugated polymer derived from polyvinyl chloride (PVC). It was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activity of the as-prepared photocatalyst was evaluated by the photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. The XPS, FT-IR, and Raman spectra show that the partly conjugated polymer derived from PVC exists on the surface of the TiO2 nanoparticles. The UV–Vis DRS, XRD, and TEM results reveal that the modification of the partly conjugated polymer can obviously improve the absorbance of the TiO2 nanoparticles in the range of visible light and hardly affect their size and crystallinity. The visible light photocatalytic activity of the as-prepared TiO2 nanocomposites is higher than that of commercial TiO2 (Degussa P25) and comparable with those of visible light photocatalysts reported in the literature. Their visible light photocatalytic stability is also good. The reasons for their excellent visible light photocatalytic activity and the major factors affecting their photocatalytic activity are discussed.  相似文献   

8.
CeO2/TiO2 nanobelt heterostructures are synthesized via a cost‐effective hydrothermal method. The as‐prepared nanocomposites consist of CeO2 nanoparticles assembled on the rough surface of TiO2 nanobelts. In comparison with P25 TiO2 colloids, surface‐coarsened TiO2 nanobelts, and CeO2 nanoparticles, the CeO2/TiO2 nanobelt heterostructures exhibit a markedly enhanced photocatalytic activity in the degradation of organic pollutants such as methyl orange (MO) under either UV or visible light irradiation. The enhanced photocatalytic performance is attributed to a novel capture–photodegradation–release mechanism. During the photocatalytic process, MO molecules are captured by CeO2 nanoparticles, degraded by photogenerated free radicals, and then released to the solution. With its high degradation efficiency, broad active light wavelength, and good stability, the CeO2/TiO2 nanobelt heterostructures represent a new effective photocatalyst that is low‐cost, recyclable, and will have wide application in photodegradation of various organic pollutants. The new capture–photodegradation–release mechanism for improved photocatalysis properties is of importance in the rational design and synthesis of new photocatalysts.  相似文献   

9.
To develop TiO2-based photocatalysts with visible light activity for better solar energy utilization, a simple flash oxidation method was developed by calcining commercial TiN nanoparticle to prepare N-doped TiO2 photocatalyst and TiN/TiO2 composite photocatalysts through the modulation of the calcination time and temperature. It was found that more energy and processing time were needed to prepare N-doped TiO2 photocatalyst than that of TiN/TiO2 composite photocatalyst during this process, while TiN/TiO2 composite photocatalyst had a better visible light absorption/photocatalytic performance than that of N-doped TiO2 photocatalyst prepared from the oxidation of the same TiN precursor. Thus, the preparation of TiN/TiO2 composite photocatalyst from TiN precursor should be a more preferred approach than the preparation of N-doped TiO2 photocatalyst for visible-light-activated photocatalysis for its cost-effectiveness.  相似文献   

10.
The photocatalytic degradation of toxic dyes has brought a new revolution to reduce water pollution. To degrade industrial dyes, TiO2 is an important photocatalyst but the role of morphology is also important in degradation. We have synthesized g-C3N4/TiO2 nanocomposite (1:1) having different shapes of TiO2 (nanorods (NR), nanospheres (NS), and nanotubes (NT)), to show the effect of morphology on its photocatalytic activity. To improve the photocatalytic efficiency of TiO2 in visible light, we have incorporated g-C3N4, a visible light active photocatalyst. The HRTEM, FESEM and Electron Diffraction studies with color mapping indicate successful synthesis of g-C3N4/TiO2 nanocomposites. The increased photocatalytic efficiency of the nanocomposites regarding the degradation of Rhodamine B (RhB) dye under visible light irradiation is due to the incorporation of g-C3N4 with different shapes of TiO2. The studies show that, the shape of TiO2 has a remarkable effect in photodegradation. The best degradation performance (~97%) was obtained from g-C3N4/TiO2 -nanotubes composite with a rate constant of 0.0403?min?1 within 80?min, whereas degradation efficiency of other shapes of TiO2 like NS (92%) and NR (94.5%) were also found to be greater than that of commercial TiO2 (P25) composite (74%). Results from UV–Vis absorption study, X-ray Diffraction studies, X-ray photoelectron spectroscopy and BET analysis suggest that the improvement in photocatalytic activity of composite is due to increased light absorption in visible region and increase in surface area (137.1?m2/g). Results from different scavengers study (DMSO, ascorbic acid and methanol) indicate that electron and superoxide ions act as main reactive species in photodegradation of RhB dye. The reusability efficiency of the catalyst shows 86% degradation after 5 consecutive cycles. The effect of pH and catalyst concentration was also determined which shows that maximum degradation occurs at pH?~?7 (98%) and degradation efficiency is increased with increase of catalyst dose from 0.1?mg/ml to 0.6?mg/ml and after that saturation occur due to increase in opacity and scattering of light. A comparative study was done with literature which suggests that this nanocomposites act as one of the best photocatalysts for degradation of toxic dyes.  相似文献   

11.
To utilize visible light more efficiently and enhance the photocatalytic performance of TiO2, Ag–Si/TiO2 photocatalyst was synthesized via a two-step method. The obtained materials were characterized by XRD, Raman, TEM, HRTEM, BET, TG–DTA, XPS, ICP as well as UV–vis DRS. All photocatalyst materials held an anatase phase confirmed by XRD, Raman and HRTEM. The Ag–Si/TiO2 photocatalysts possessed high thermal stability and the phase transformation was retarded to about 900 °C revealed by XRD and TG–DTA. The Ag–Si/TiO2 particles synthesized via the nonaqueous method were highly monodispersed and the particles size became smaller compared to the un-doped TiO2, resulting in the enlargement of surface area. In addition, UV–vis light absorption shifted to visible region after Ag doping. XPS results demonstrated that Si weaved into the matrix of TiO2 and enriched in the surface layer, while Ag dispersed on the surface of TiO2 particles. The Ag dopant suppressed the recombination of photogenerated electrons and holes, Si enlarged the surface of photocatalysts. Silver and silicon co-doping improved the visible photocatalytic activity, which was evaluated by Rhodamine B (RhB) degradation. The photocatalytic activity of the obtained Ag–Si/TiO2 sample was much more higher than those of pure TiO2 and Ag/TiO2, reaching the maximum at the Ag and Si content of 0.5 mol% and 20.0 mol%, respectively. The improved visible photocatalytic activity may be attributed to the synergetic effects of codoping by silver and silicon.  相似文献   

12.

The photoactive SiO2/WO3–TiO2@rGO nanocomposite was fabricated through sol–gel, microwave, and hydrothermal approaches for the photodegradation of methylene blue (MB) as an organic-colored pollutant. The nanocomposite photocatalysts were formulated by adjustment of the ingredients content to achieve efficient synergic effects on photocatalyst performance. The results exhibited that optimum amount of SiO2 and rise in WO3/TiO2 ratio as well as incorporation of reduced graphene oxide in structure can be led to further efficiency of degradation under visible light. The effect of sunlight irradiation, pH of MB solution, MB concentration, and lamp distance on photodegradation reaction were also investigated. The best performance about 99.9% MB degradation was obtained based on using 0.3 g/L of optimum photocatalyst to remove the 5 ppm MB solution with pH of 5.41 during 3 h irradiation by visible-light source with 30 cm distance from MB solution. As well, results showed that photocatalyst performance under visible light is better than sunlight irradiation. The most favorable photocatalyst indicated surface area of 60.9 m2/g. Furthermore, the reusability test indicated a proper activity after three cycles under the same conditions. So, the introduced efficient visible photoactive SiO2/WO3–TiO2@rGO nanocomposite can be considered as an appropriate potential to remove organic pollutants in colored effluents.

  相似文献   

13.
The nano-scale ZnO/TiO2 coupled oxide photocatalyst was successfully synthesized by a two-step method, the homogeneous hydrolysis and low temperature crystallization. The resultant photocatalyst was characterized by ultraviolet-visible absorption spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of coupled oxides was also evaluated by the degradation of methyl orange (MO) as a model compound. The experimental results showed that the prepared ZnO/TiO2 at low hydrothermal crystallization temperature exhibited higher photocatalytic activity for the decomposition of MO than either pure phase ZnO or anatase TiO2, and even higher than that of the Degussa P25 TiO2.  相似文献   

14.
A hybrid photocatalyst consisting of TiO2 and nonporous SiO2 (TiO2/CS-RH) is prepared by loading TiO2 sol on one-dimensional/three-dimensional chain (1D/3D-chain) which is synthesized from rice husk. The products are characterized by X-ray diffraction, N2-adsorption–desorption analysis and scanning electron microscopy. Meanwhile, the corresponding photocatalytic activity is evaluated by measuring the photocatalytic oxidation of rhodamine B (RhB). The results reveal that TiO2/CS-RH displays a hierarchical porous structure from micrometer to nanometer scale with high BET surface area (574.7–719.4 cm2/g). Meanwhile, the activity of TiO2/CS-RH for the photocatalytic degradation of RhB in aqueous slurry is significantly higher than that of the unsupported TiO2. The optimal TiO2 loaded on the support was two times and then treated at 600 °C for 120 min to complete the conversion of RhB. In contrast, the unsupported TiO2 photocatalyst could convert only 20% of RhB in the same irradiation time and condition.  相似文献   

15.
《Advanced Powder Technology》2014,25(5):1624-1633
A series of TiO2/Zn–Al layered double hydroxides (LDHs) based composites were synthesized and their photocatalytic efficiency in rhodamine B photodegradation reaction under solar light irradiation was tested. The aim of this study was to develop photocatalysts based on TiO2/Zn–Al layered double hydroxides that can be activated by solar light irradiation. The influence of TiO2 doping (1, 2 and 3 mass%) on the photocatalytic properties of developed TiO2/Zn–Al LDHs nanocomposites was studied. Different photocatalytic behaviour of composites was interpreted in correlation to their structural, textural, morphological properties and kinetic parameters. All nanocomposites were active in the selected reaction. It was observed that the presence of Zn2TiO4 coupled with the ZnO phase contributes to the activity provoked by solar light irradiation. The photodegradation follows the pseudo first-order kinetics in accordance with the Langmuir–Hinshelwood model. The kinetic study suggested that the applied synthesis methodology resulted in homogeneous distribution of TiO2 and other active components on the photocatalyst surface leading to better accessibility of active sites. The developed synthesis method enables favourable interactions among active phases. Novel TiO2/LDH based photocatalysts are advantageous considering the low-cost and simple preparation, ensuring high photodegradation efficiency, making them appealing for the application in the field of water treatment.  相似文献   

16.
The structural, morphological, and optical properties of the sol–gel derived TiO2 nanoparticles at different pH and calcination temperature were investigated in the present study. X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), UV–Visible(Vis) spectroscopy, energy dispersive studies (EDS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoluminescence (PL) spectroscopy, BET surface area analysis, and Barrett-Joyner-Halenda (BJH) pore size distribution and pore volume analysis were used to characterize the prepared TiO2 photocatalyst. The range of crystallite size and band gap of the synthesized TiO2 samples were in the range of 20–80?nm and 2.5–3.2?eV respectively. The photocatalytic performance of prepared TiO2 photocatalysts was evaluated by photodegradation of Methylene Blue (MB) solution under simulated solar irradiation. Results illustrate that the synthesized TiO2 exhibits visible light activity at higher calcination temperature. Crystallinity and surface area plays a vital role in the overall performance of the prepared TiO2 photocatalyst.  相似文献   

17.
The g-C3N4/Fe3O4/MnWO4 nanocomposites were prepared by a refluxing-calcination procedure. Visible-light-induced photocatalytic experiments showed that the g-C3N4/Fe3O4/MnWO4 (10%) nanocomposite has excellent ability to degrade a range of contaminants including rhodamine B, methylene blue, methyl orange, and fuchsine, which is about 7, 10, 25, and 31 times of the g-C3N4 photocatalyst, respectively. Reactive species trapping experiments revealed that superoxide anion radicals play major role in the photodegradation reaction of rhodamine B (RhB). After the treatment process, the utilized photocatalyst was magnetically recovered and reused with negligible loss in the photocatalytic activity, which is vital in the photocatalytic processes. Finally, a mechanism was proposed for the enhanced interfacial carrier separation and transfer and the improved photocatalytic performance.  相似文献   

18.
A simple one-step electrochemical deposition method was demonstrated to fabricate reduced graphene oxide/Ag nanoparticle co-decorated TiO2 nanotube arrays (RGO/Ag–TiO2NTs) photocatalyst in this study. The structures and properties of these photocatalysts were characterized using scanning electron microscope, X-ray diffraction, UV–Vis diffuse reflection spectra, and photoluminescence. By taking the advantages of TiO2, graphene, and Ag nanoparticles (AgNPs), RGO/Ag–TiO2NTs showed a greatly improved photocatalytic activity compared with the bare TiO2NTs, Ag–TiO2NTs or RGO–TiO2NTs. The deposited RGO and AgNPs not only reduce the recombination of photogenerated electrons and holes, but also increase the surface area of the catalyst. Both photocatalytic performance and adsorptivity of the catalyst have been improved. The ternary photocatalyst exhibited over 93 % removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) under simulated solar light irradiation with good stability and easy recovery, which justifies the photocatalytic system, a promising application for herbicide or other organic pollutant removal from water.  相似文献   

19.
The WO3/TiO2 nanocomposites were successfully prepared via a facile oxalic acid assisted hydrothermal process. The oxalic acid played a vital role on the preparation of WO3/TiO2 nanocomposites. Notably, it has been observed that the nanocomposites exhibited the wider absorption edge, and the higher photocatalytic activity, compared with pure TiO2. In addition, the photocatalytic mechanism was proposed, and it elaborated that WO3/TiO2 nanocomposite promoted the separation of the photoproduction carriers, and improved photocatalytic activity. The WO3/TiO2 nanocomposite may have a potential application as a UV–visible photocatalyst.  相似文献   

20.
A series of polypyrrole (PPy)/titanium dioxide (TiO2) nanocomposites were prepared in different polymerization conditions by ‘in situ’ chemical oxidative polymerization. The nanocomposites were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectra (XPS), and UV–Vis diffuse reflectance spectra. The photocatalytic degradation of methyl orange (MO) was chosen as a model reaction to evaluate the photocatalytic activities of TiO2/PPy catalysts. The results show that a strong interaction exists at the interface between TiO2 and PPy, the deposition of PPy on TiO2 nanoparticles can alleviate their agglomeration, PPy/TiO2 nanocomposites show stronger absorbance than neat TiO2 under the whole range of visible light. The obtained PPy/TiO2 nanocomposites exhibit significantly higher photocatalytic activity than the neat TiO2 on the degradation of MO aqueous solution under visible and UV light illumination. The reasons for improving the photocatalytic activity were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号