首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Cytosolic free calcium ion concentration ([Ca2+]cyt) after a salicylic acid (SA)-stimulus was monitored in cells of the yeast Saccharomyces cerevisiae expressing apoaequorin, which constitutes a Ca(2+)-sensitive luminescent protein, aequorin, when combined with coelenterazine. SA induced a transient [Ca2+]cyt elevation that was dependent on the concentration of SA and pH of the SA solution. The SA-induced [Ca2+]cyt elevation was not reduced in Ca(2+)-deficient medium, suggesting that Ca2+ was mobilized from an intracellular Ca2+ store(s). Benzoic acid, butyric acid and sorbic acid did not induced a [Ca2+]cyt elevation.  相似文献   

2.
Whereas the light yield of PWO crystal can be significantly improved by doping with either of F- and Sb3+, effects of heavily co-doping with by F-+Sb3+, F-+Ca2+, and F-+Ca2++Sb3+, respectively, on the properties of PWO scintillation crystals, including optical transmission, luminescence and light yield were studied. The result indicates that co-doping with three dopants, F-+Ca2++Sb3+, is a more effective measure than doping with single dopant F- for the improvement of scintillation properties of PWO crystals, including light yield.  相似文献   

3.
Mobilization of intracellular Ca2+ is a critical cellular response to lysophosphatidic acid (LPA) in many cell types. Recent identification of endothelial differentiation gene (Edg) 2 and Edg4 as subtypes of G protein-coupled receptors for LPA allowed examination of the Ca2+ mobilization mediated specifically by each subtype. To reduce endogenous background levels while enhancing recombinant receptor-specific signals, the aequorin luminescence method was used to quantify cytoplasmic Ca2+ levels. In TAg-Jurkat T cells transiently co-transfected with apoaequorin and human Edg2 or Edg4 cDNA, LPA dose-dependently increased light emission triggered by increased Ca2+ bound to aequorin. N-Palmitoyl-L-serine-phosphoric acid and N-palmitoyl-L-tyrosine-phosphoric acid, which had been previously shown to be antagonists for Xenopus laevis LPA receptors, did not antagonize the Ca2+-mobilizing effects of Edg2 and Edg4. Surprisingly, they acted as agonists or partial agonists for Edg2 and Edg4. The Ca2+ mobilization by Edg2 and Edg4 was further characterized in stable transfectants of rat HTC4 hepatoma cells. By using the fura-2 fluorescence method, a difference in the kinetics of Ca2+ flux with Edg2 and Edg4 was observed. With Edg2, but not Edg4, the initial increase in the Ca2+ concentration was followed by a sustained influx of extracellular Ca2+. The coincident production of inositol phosphates and the inhibition of Ca2+ mobilization by the phospholipase C inhibitor U73122 strongly suggested that Edg2 and Edg4 mobilize Ca2+ through inositol trisphosphate generated by phospholipase C activation. Pertussis toxin almost completely blocked LPA-induced Ca2+ mobilization by Edg2 but only partially blocked that by Edg4, which suggests that Edg2 transduces Ca2+ mobilization largely through pertussis toxin-sensitive Gi proteins, whereas Edg4 requires both Gi and Gq.  相似文献   

4.
Intracellular Ca2+ ([Ca2+]i) was measured in single isolated human umbilical vein smooth muscle cells. Stimulation with histamine, in the absence of external Ca2+, mobilised Ca2+ from intracellular stores. When repeated brief applications of agonist were used, the time to onset, amplitude and rate of rise of the Ca2+ transients were found to change. Two components could often be discerned in the rising phase of the transients, an initial slow "pacemaker" and a second faster and larger component. Following the first histamine-activated transient the basal level of [Ca2+]i was invariably lower than that prior to stimulation. This lower value was maintained whilst the cell remained in Ca(2+)-free solution, but could be returned to a higher level if the cell was exposed to external Ca2+. When the mobilisation of the intracellular store was reduced to undetectable levels, re-exposure to Ca(2+)-containing medium reactivated responses. In the absence of external Ca2+, continuous application of histamine activated a series of transient increases in intracellular Ca2+, which decreased progressively in amplitude and rate of rise. The interval between transients also increased. These findings are discussed in terms of the activation of inositol trisphosphate-sensitive intracellular Ca2+ stores and their sensitivity to cytoplasmic Ca2+ and intrasarcoplasmic reticulum Ca2+.  相似文献   

5.
T cell tolerance to superantigen can be mediated by clonal anergy in which Ag-specific mature T cells are physically present but are not able to mount an immune response. We induced T cell unresponsiveness to minor lymphocyte stimulations locus antigen (Mls)-1a in mice transgenic for TCR V beta 8.1 in three different systems: 1) injection of Mls-1a spleen cells, 2) mating with Mls-1a mice, and 3) bone marrow (BM) chimeras in which Mls-1a is present only on nonhematopoietic cells. CD4+8-V beta 8.1+ cells from all these groups did not proliferate in response to irradiated spleen cells from Mls-1a mice. We compared the response of these cells by T cell/stimulator cell conjugate formation, Ca2+ mobilization, and proliferation assays. The mechanisms underlying the unresponsiveness of these T cells appear to differ. CD4+8-V beta 8.1+ cells from Mls-1a spleen cell-injected mice mobilized cytoplasmic Ca2+ but proliferated at a reduced level in response to cross-linking with anti-TCR mAb. However, these cells formed conjugates, mobilized Ca2+, and proliferated in response to Mls-1a when activated B cells were used as stimulators, although they produced reduced levels of IL-2. In Mls-1a/b V beta 8.1 transgenic mice, a subset in CD4+8-V beta 8.1+ cells did not mobilize cytoplasmic Ca2+ after TCR cross-linking. Their conjugate formation, Ca2+ mobilization, or proliferation in response to Mls-1a on activated B cells was undetectable. Finally, CD4+8-V beta 8.1+ cells from the BM chimeras proliferated to TCR cross-linking at a partially reduced level and formed conjugates, mobilized Ca2+, and proliferated in response to Mls-1a on activated B cells. These features suggest that the mechanisms underlying the maintenance of anergy in Mls-1a spleen cell-injected mice are distinct from those in Mls-1a mice.  相似文献   

6.
The effects of extracellular Ca2+ on cytotoxicity induced by cardiotoxin (CTX), isolated from Chinese cobra venom, were investigated in cultured rabbit aortic endothelial cells (RAECs). In Hank's buffered saline solution (HBSS) containing 1.2 mM Ca2+, CTX (1-30 microM) caused cell necrosis and cell death in a concentration-dependent manner, as determined by trypan blue exclusion test performed after a 20-min CTX treatment. The concentration of CTX that caused 50% cell death was about 6.5 microM. CTX (10 microM)-induced RAEC damage was also evident but less prominent in Ca2+-free medium and almost completely prevented in medium containing 7-10 mM Ca2+. Therefore, Ca2+ appears to provoke CTX-induced injury at physiological concentrations, but protects against it at high concentrations. The protection of RAECs from CTX-induced injury could also be achieved by high concentrations of Ni2+ and Mg2+. Using the fura-2 fluorescence technique to measure the cytosolic free Ca2+ concentration ([Ca2+]i) of single RAEC, it was shown that in 1.2 mM Ca2+-containing HBSS, treatment of RAECs with 10 microM CTX for 7-35 min resulted in a tremendous and irreversible [Ca2+]i elevation, suggestive of cell membrane damage and extracellular Ca2+ entry. Ni2+ could also enter the cytosol of these damaged RAECs. However, there was no [Ca2+]i elevation or Ni2+ entry in RAECs that were preincubated in HBSS containing 7 mM Ca2+ or Ni2+ before CTX exposure. In RAECs protected with 7 mM Ca2+, the intracellular Ca2+ signals triggered by 100 microM extracellular ATP or 10 microM bradykinin in CTX-treated groups were similar to those in the untreated control groups. Taken together, the results indicate that high extracellular Ca2+ concentrations protected RAECs from CTX-induced injury, and preserved the ability of CTX-treated RAECs to generate Ca2+ signals in response to physiological stimuli.  相似文献   

7.
SpectralPropertiesandSensitizationofCe3+andEu2+CodopedCalciumZincChlorosilicateLinHai(林海),LiuXingren(刘行仁),ZhangXiao(张晓)(Cha...  相似文献   

8.
9.
Voltage-gated calcium (Ca) channels are highly sensitive to cytosolic H+, and Ca2+ influx through these channels triggers an activity-dependent fall in intracellular pH (pHi). In principle, this acidosis could act as a negative feedback signal that restricts excessive Ca2+ influx. To examine this possibility, whole cell current-clamp recordings were taken from rat hippocampal interneurons, and dendritic Ca2+ transients were monitored fluorometrically during spike trains evoked by brief depolarizing pulses. In cells dialyzed with elevated internal pH buffering (high beta), trains of >15 action potentials (Aps) provoked a significantly larger Ca2+ transient. Voltage-clamp analysis of whole cell Ca currents revealed that differences in cytosolic pH buffering per se did not alter baseline Ca channel function, although deliberate internal acidification by 0.3 pH units blunted Ca currents by approximately 20%. APs always broadened during a spike train, yet this broadening was significantly greater in high beta cells during rapid but not slow firing rates. This effect of internal beta on spike repolarization could be blocked by cadmium. High beta also 1) enhanced the slow afterhyperpolarization (sAHP) seen after a spike train and 2) accelerated the decay of an early component of the sAHP that closely matched a sAHP conductance that could be blocked by apamin. Both of these effects on the sAHP could be detected at high but not low firing rates. These data suggest that activity-dependent pHi shifts can blunt voltage-gated Ca2+ influx and retard submembrane Ca2+ clearance, suggesting a novel feedback mechanism by which Ca2+ signals are shaped and coupled to the level of cell activity.  相似文献   

10.
When studying enzymic and fluorescence properties of myosin and DTNB-treated myosin in the presence of K+, Na+, Li+, NH4+, Ca2+ and Mg2+ cations the following results were obtained. By the intrinsic protein fluorescence techniques no essential structural changes of myosin molecule at the dissociation of the DTNB light chain and activation myosin ATPase in the presence of different cations were found. The decrease of K+-EDTA-, the increase of Mg2+-activated and the stability of Ca2+-activated myosin ATPase may be the result of the modification of SH1 or SH2 sulfhydryl groups when treating the DTNB myosin in our conditions. The different level of decrease of the K+- and NH4+-activated myosin. ATPase may be explained by the fact, that myosin sulfhydryl groups have different effects on the activation of its ATPase by these cations.  相似文献   

11.
The cholinergic efferent inhibition of mammalian outer hair cells (OHCs) is mediated by a hyperpolarizing K+ current. We have made whole-cell tight-seal recordings from single OHCs isolated from the guinea pig cochlea to characterize the mechanism by which acetylcholine (ACh) activates K+ channels. After ACh application, OHCs exhibited a biphasic response: an early depolarizing current preceding the predominant hyperpolarizing K+ current. The current-voltage (I-V) relationship of the ACh-induced response displayed an N-shape, suggesting the involvement of Ca2+ influx. When whole-cell recording was combined with confocal calcium imaging, we simultaneously observed the ACh-induced K+ current (IK(ACh)) and a Ca2+ response restricted to the synaptic area of the cell. This IK(ACh) could be prevented by loading OHCs with 10 mM of the fast Ca2+ buffer bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (or BAPTA), therefore allowing the observation of the ACh-induced early current in isolation. This early current revealed nicotinic features because it activated with an intrinsic delay in the millisecond range, reversed nearly in between potassium and sodium equilibrium potentials, and was blocked by curare. However, it was strongly reduced in the absence of external Ca2+, and its I-V relationship displayed an unusual outward rectification at positive membrane potentials and an inward rectification below -60 mV. The results indicate that the cholinergic response of mammalian OHCs involves a "nicotinic-like" nonspecific cation channel through which Ca2+ enters and triggers activation of nearby Ca2+-dependent K+ channels.  相似文献   

12.
Immortalized gonadotropin releasing hormone (GnRH) neurons (GT1 cell line) in culture release GnRH in a pulsatile manner, suggesting that GT1 cells form a functional neuronal network. Optical imaging techniques and a voltage-sensitive fluorescent dye (RH795) were used to study the mechanism of neuronal synchronization and intercellular communication in cultured GT1-7 cells (one of the subclones of the GT1 cell line). The majority (79%) of GT1-7 cells in contact with one another revealed synchronized fluctuations in spontaneous neuronal activity. When a cell in contact with other cells was electrically stimulated, the evoked excitation was propagated to neighbouring cells. The ionic mechanisms involved in the propagation of electrical signals between interconnected GT1-7 cells were investigated using various blockers of Na+, Ca2+ and K+ channels. The propagation of stimulus-evoked excitation was prevented by the voltage-dependent Na+ channel blocker tetrodotoxin. It was also prevented by the voltage-dependent Ca2+ channel blockers, Ni+ (nonselective), nimodipine (L-type) and flunarizine (T-type > L-type), but not apparently affected by omega-agatoxin IVA (P- and Q-type) and omega-conotoxin MVIIA (N-type). The propagation was not influenced by the K+ channel blockers, quinine, tetraethylammonium and Ba2+, but in some cases, it was enhanced by 4-aminopyridine (4-AP) and prevented by apamin. These results suggest that voltage-dependent Na+ channels and L- and T-type Ca2+ channels are involved in the propagation of electrical signals in the GT1-7 neuronal network. Ionic mechanisms, through 4-AP- or apamin-sensitive K+ channels, also seem to be involved in the regulation of signal propagation. These mechanisms may underlie the functioning of the neuronal network formed by immortalized GnRH neurons.  相似文献   

13.
A new approach was developed to determine quantitatively the fraction of current carried by Ca2+ through an ion channel under physiological conditions. This approach entails the simultaneous measurement of membrane current and intracellular Ca2+ for single cells. Whole-cell patch-clamp techniques were used to measure current, and intracellular Ca2+ was monitored with the fluorescent indicator fura-2. To obtain a quantitative measure of the fraction of current carried by Ca2+, a cell-by-cell calibration method was devised to account for differences among cells in such factors as cellular volume and Ca2+ buffering. The method was used to evaluate the Ca2+ flux through muscle and neuronal nicotinic ACh receptors (nAChRs). In a solution containing 2.5 mM Ca2+ at a holding potential of -50 mV, Ca2+ carries 2.0% of the inward current through muscle nAChRs from BC3H1 cells and 4.1% of the inward current through neuronal nAChRs from adrenal chromaffin cells. The Ca2+ flux through neuronal nAChRs of adrenal chromaffin cells is insensitive to alpha-bungarotoxin. The influx of Ca2+ is voltage dependent, and because of the Ca2+ concentration difference across the cellular membrane, there is Ca2+ influx into the cell even when there is a large net outward current. At both muscle and neuronal cholinergic synapses, activity-dependent Ca2+ influx through nicotinic receptors produces intracellular signals that may have important roles in synaptic development, maintenance, and plasticity.  相似文献   

14.
The cytoplasmic free calcium concentration ([Ca2+]i) was measured in cultured microglial cells with the Ca2+-sensitive fluorescent dye Fura-2 using a digital imaging system. Stimulation of P2 purinergic receptors by ATP or UTP always evoked a [Ca2+]i elevation. The ATP-induced Ca2+ response involved both Ca2+ influx through ionotropic receptors and Ca2+ release from intracellular pools, whereas UTP selectively stimulated intracellular Ca2+ release. When intracellular Ca2+ release was stimulated in the absence of extracellular Ca2+, the readmission of extracellular Ca2+ caused a large rebound [Ca2+]i increase. Following this rebound, [Ca2+]i did not return to the initial resting level, but remained for long periods of time (up to 20 min), at a new, higher steady-state level. Both the amplitude of the rebound Ca2+ transient and the new plateau level strongly correlated with the degree of intracellular Ca2+ depletion, indicating the activation of a store-operated Ca2+ entry pathway. The elevated steady-state [Ca2+]i level was associated with a significant increase in the plasma membrane permeability to Ca2+, as changes in extracellular Ca2+ were reflected in almost immediate changes of [Ca2+]i. Similarly, blocking plasma-lemmal Ca2+ channels with the non-specific agonist La3+ (50 microM) caused a decrease in [Ca2+]i, despite the continuous presence of Ca2+ ions in the extracellular medium. After the establishment of the new, elevated steady-state [Ca2+]i level, stimulation of P2U metabotropic purinoreceptors did not induce a [Ca2+]i response. In addition, application of either thapsigargin (1 microM) or carbonyl cyanide chlorophenyl hydrazone (10 microM) failed to affect [Ca2+]i. We conclude that the maximal depletion of intracellular Ca2+ stores in mouse brain microglia determines the long-term activation of a plasma membrane Ca2+ entry pathway. This activation appears to be associated with a significant decrease in the capability of the intracellular Ca2+ stores to take up cytosolic Ca2+ once they have been maximally depleted.  相似文献   

15.
Interactions with the extracellular matrix, accumulation of Ca2+, formation of matrix vesicles, and regulation of tissue pH by growth plate chondrocytes all appear to be vital to endochondral calcification. Thus, the activities of Ca2+ and H+ ions in these cells, while still embedded in their organic matrix, are of great interest. Using laser confocal imaging and sensitive Ca2+ (Indo 1) and pH (BCECF) probes, cellular Ca2+ and pH were analyzed in thin sections of freshly isolated cartilage. Mean values of cytosolic Ca2+ in cells from the various zones of the growth plate were quite similar, but levels in individual cells and subcellular compartments varied significantly. Ca2+ was elevated intensely near the periphery of cells in the zones of maturation and hypertrophy, and many Ca2+ rich particles were seen in the matrix near these cells. Levels of Ca2+ within the cells varied with time. In the proliferative region, cyclical increases and decreases in Ca2+ were seen, but there was little shedding of Ca2+ rich particles. However, after repeated Ca2+ cycling, in the zones of maturation and hypertrophy, Ca2+ rich particles were shed from the cell surface, forming what appeared to be matrix vesicles. Intracellular pH levels also varied significantly within the chondrocytes and between the cells and zones. Numerous focal elevations in pH (> 8.0) were seen in central regions of the maturing and early hypertrophic cells, with lower pH (6.5-7.2) near the cell periphery of the late hypertrophic and calcifying cells. This pattern of cytoplasmic alkalinization and subsequent acidification appears to contribute to loading of Ca2+ and Pi into matrix vesicles during their formation by the chondrocytes.  相似文献   

16.
In the green alga Chlamydomonas chlamyrhodopsin fulfills its role as a light sensor by absorbing light and activating photoreceptor channels within the eyespot area. At intense light stimuli, the photoreceptor (P) current triggers a fast and a slow flagellar current that finally leads to backward swimming (stop response). Here we report about probing the photoreceptor current directly at the eyespot. This allows the detection of the whole P current with a size of above 50 pA. The P current appears with a delay of less than 50 microseconds, suggesting that rhodopsin and the P channel are closely coupled or form one ion channel complex. The Ca2+ dependence of the P current has been demonstrated with the established suction technique in a capacitive mode. The P current shows the maximum amplitude at only 300 nM Ca2+, and it gradually declines at higher Ca2+. In addition to Ca2+, the photoreceptor and the fast flagellar current can be carried by Sr2+ and Ba2+. Mg2+ is conducted less efficiently and at high concentrations blocks the photoreceptor channel. A motion analysis of the cells shows that only Ca2+ and Sr2+ can induce physiological stop responses, whereas the large Ba2+ currents cause abnormal long-lasting cell spiraling.  相似文献   

17.
The luminescence intensity of emission peak at around 525 nm decreased in the Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphors. Mg2+ ion, which was likely incorporated into the Sc3+ position of the host crystal, was co-doped to adjust the crystal field and compensate for the excess positive charge due to the doping of Ce3+. The green emission belonged to the 5d→4f transition of Ce3+ moved toward longer wavelength by addition of Mg2+ in Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphor, which could increase the brightness of the phosphor. However, the position of weakening of luminescence intensity at around 525 nm remained basically unchanged by increasing the amount of Mg2+. The results showed that the weakening of luminescence intensity at around 525 nm caused by the absorption of Er3+, which had little influence on the environment of the crystal field.  相似文献   

18.
We have measured the [Ca2+] in the endoplasmic reticulum ([Ca2+]er) of intact HeLa cells at both 22 degrees C and 37 degrees C using endoplamsic reticulum-targeted, low Ca2+ affinity aequorin reconstituted with coelenterazine n. Aequorin consumption was much slower at 22 degrees C, and this allowed performing a much longer study of the dynamics of [Ca2+]er. The steady-state [Ca2+]er (500-600 microM) was not modified by the temperature, although both the rates of pumping and leak were decreased at 22 degrees C. The behavior of both [Ca2+]er and cytoplasmic [Ca2+] ([Ca2+]c) after the addition of increasing concentrations of agonists and/or Ca2+-ATPase inhibitors, or following incubation in Ca2+-free medium were compared. We show that agonists induce a fast but relatively small decrease in [Ca2+]er, which is enough to produce a sharp increase in [Ca2+]c. Termination of Ca2+ release is controlled by feedback inhibition of the inositol 1,4,5-trisphosphate receptors by [Ca2+]c, a mechanism that appears to be designed to release the minimum amount of Ca2+ necessary to produced the required [Ca2+]c signal. We also show that Ca2+ release is inhibited progressively when [Ca2+]er decreases below a threshold of about 150 microM, even in the absence of Ca2+ pumping or -Ca2+-c increase. This effect is consistent with a regulation of the inositol 1,4,5-trisphosphate-gated channels by [Ca2+]er.  相似文献   

19.
In order to improve the luminescence properties of CaTiO3:Pr3+, a series of CaTiO3:Pr3+, such as CaTi0.97Nb0.03O3:Pr3+, Ca0.8Zn0.2TiO3: Pr3+, Ca0.8Zn0.2Ti0.97Nb0.03O3:Pr3+ and B3+-doped Ca0.8Zn0.2Ti0.97Nb0.03O3: Pr3+ were prepared through conventional solid state reaction method. The results of the photoluminescence excitation and emission spectra showed that all the samples emitted red phosphorescence at 612 nm originating from 1D2 to 3H4 emission of Pr3+ under the 337 nm excitation. When examined by the X-ray diffraction (XRD), all the samples presented a predominant phase of CaTiO3 (JCPDS# 42-423) except Zn2+-doped samples which also revealed another phase of Zn2Ti3O8 (JCPDS# 73-579). The results of the afterglow decay curves showed that co-doping Zn2+ ions, Nb5+ ions or adding a small amount of B3+ into Ca0.8Zn0.2Ti0.97Nb0.03O3:Pr3+ were effective in improving the photoluminescence properties of CaTiO3:Pr3+ phosphor. Thermoluminescence results showed that the trap existing in all the samples was the same as in CaTiO3:Pr3+ and doping singly Nb5+ or Zn2+ hardly changed the trap depth but co-doping Nb5+ and Zn2+ could modify the trapping level from 0.63 to 1.26 eV distinctively. In addition, adding a certain amount of B3+ into CTO-PZN could also deepen the trap depth.  相似文献   

20.
The effects of various Ca2+ channel agonists and antagonists on tumor cell growth were investigated using U-373 MG human astrocytoma and SK-N-MC human neuroblastoma cell lines. Classical Ca2+ channel antagonists, verapamil, nifedipine, and diltiazem, and inorganic Ca2+ channel antagonists, Ni2+ and Co2+, inhibited growth of these tumor cells in a dose-dependent manner. Except Ni2+, these Ca2+ channel antagonists did not induce a significant cytotoxicity, suggesting that the growth-inhibitory effects of these drugs may be the result of the influence on the proliferative signaling mechanisms of these tumor cells. In contrast, Bay K-8644, a Ca2+ channel agonist, neither enhanced the growth of tumor cells nor increased intracellular Ca2+ concentration, indicating that voltage-sensitive Ca2+ channels may not be involved in tumor cell proliferation. Moreover, growth-inhibitory concentrations of Ca2+ channel antagonists significantly blocked agonist (carbachol or serum)-induced intracellular Ca2+ mobilization, which was monitored using Fura-2 fluorescence technique. These results suggest that the inhibition of the growth of human brain tumor cells induced by Ca2+ channel antagonists may not be the result of interaction with Ca2+ channels, but may be the result of the interference with agonist-induced intracellular Ca2+ mobilization, which is an important proliferative signaling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号