首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we demonstrate the protocol of a biocatalytic precipitation (BCP)-based sandwich photoelectrochemical (PEC) horseradish peroxidase (HRP)-linked immunoassay on the basis of their synergy effect for the ultrasensitive detection of mouse IgG (antigen, Ag) as a model protein. The hybrid film consisting of oppositely charged polyelectrolytes and CdS quantum dots (QDs) is developed by the classic layer by layer (LbL) method and then employed as the photoactive antibody (Ab) immobilization matrix for the subsequent sandwich-type Ab-Ag affinity interactions. Improved sensitivity is achieved through using the bioconjugates of HRP-secondary antibodies (Ab(2)). In addition to the much enhanced steric hindrance compared with the original one, the presence of HRP would further stimulate the BCP onto the electrode surface for signal amplification, concomitant to a competitive nonproductive absorption that lowers the photocurrent intensity. As a result of the multisignal amplification in this HRP catalyzed BCP-based PEC immunoassay, it possesses excellent analytical performance. The antigen could be detected from 0.5 pg/mL to 5.0 ng/mL with a detection limit of 0.5 pg/mL.  相似文献   

2.
Inexpensive, non-toxic, and biocompatible materials that can disperse multiwall carbon nanotubes (MWCNTs) in aqueous solutions through a non-covalent approach while retaining their unique electronic and photonic properties are highly preferred. In this article, we introduce the use of an amphiphilic dipeptide derivative, aspartame, as an effective dispersing agent in preparing highly stable suspensions under ultrasonication. The results demonstrate that aspartame was absorbed by the nanotube surface possibly because of non-covalent ππ stacking between the aromatic group of aspartame and the CNT backbone. In addition, the resulting MWCNT/aspartame composites remained stably dispersed over a wide range of pH values. The chronoamperometric measurements of MWCNT/aspartame composite-coated electrodes for hydrogen peroxide demonstrated better electrochemical detection performance, as characterized by significantly enhanced step current, higher sensitivity, and reduced potential compared with bare electrodes.  相似文献   

3.
采用壳聚糖包裹的多壁碳纳米管膜固定辣根过氧化物酶(HaP)于玻碳电极表面,实现了HRP的直接电化学并以此酶膜制备了NO生物传感器.在磷酸缓冲溶液中固定在电极表面的HRP氧化还原式电位为-0.354 V(us.SCE),直接电子转移速率常数为4.24±1.02 s-1.研究结果表明,固定在电极表面的HRP能保持其对一氧化氮还原的生物电催化活性,该传感器在NO浓度为1.0×10-4~1.4×10-3 mol L-1范围内存在线性响应,响应时间小于11 s,NO的检出限为7×10-4 mol L-1.多壁碳纳米管特殊的电学性质和壳聚糖良好的生物相容性性使得构筑的HRP生物传感器呈现了良好的应用前景,尤其适用于痕量NO的检测.  相似文献   

4.
We have used single-walled carbon nanotube field-effect transistor (NTFET) devices to probe the interactions between carbohydrates and their recognition proteins called lectins. These interactions are involved in a wide range of biological processes, such as cell-cell recognition, cell-matrix interaction as well as viral and bacterial infections. In our experiments, NTFETs were functionalized noncovalently with porphyrin-based glycoconjugates synthesized using "click" azide-alkyne chemistry, and change in electrical conductance was measured upon specific binding of two bacterial lectins that present different carbohydrate preference, namely PA-IL, PA-IIL from Pseudomonas aeruginosa and a plant lectin Concanavalin A. However, no significant change in the device characteristics was observed when the devices were exposed to other lectins with different specificity. Detection of PA-IL binding to galactosylated NTFETs was highly sensitive (2 nM) with a measured dissociation constant (K(d) = 6.8 μM) corresponding to literature data. Fluorescence microscopy, atomic force microscopy, UV-vis-NIR spectroscopy, and several control measurements confirmed the NTFET response to selective interactions between carbohydrates and lectins.  相似文献   

5.
The single-walled carbon nanotubes (SWCNTs) modified carbon ionic liquid electrode (CILE) was designed and further used for the voltammetric detection of rutin in this paper. CILE was prepared by mixing graphite powder with ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate and liquid paraffin together. Based on the interaction of SWCNTs with IL present on the electrode surface, a stable SWCNTs film was formed on the CILE to get a modified electrode denoted as SWCNTs/CILE. The characteristics of SWCNTs/CILE were recorded by different methods including cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The electrochemical behaviors of rutin on the SWCNTs/CILE were investigated by cyclic voltammetry and differential pulse voltammetry. Due to the specific interface provided by the SWCNTs-IL film, the electrochemical response of rutin was greatly enhanced with a pair of well-defined redox peaks appeared in pH 2.5 phosphate buffer solution. The oxidation peak currents showed good linear relationship with the rutin concentration in the range from 1.0 × 10− 7 to 8.0 × 10− 4 mol/L with the detection limit as 7.0 × 10− 8 mol/L (3σ). The SWCNTs/CILE showed the advantages such as excellent selectivity, improved performance, good stability and it was further applied to the rutin tablets sample detection with satisfactory results.  相似文献   

6.
Munge B  Liu G  Collins G  Wang J 《Analytical chemistry》2005,77(14):4662-4666
Signal amplification using enzyme multilayers on carbon nanotube (CNT) templates is shown to yield a remarkably sensitive electrochemical detection of proteins and nucleic acids. The electrostatic layer-by-layer (LBL) self-assembly onto CNT carriers maximizes the ratio of enzyme tags per binding event to offer the greatest amplification factor reported to date. Absorption spectroscopy, TEM, and electrochemical characterization confirm the formation of LBL enzyme nanostructures on individual CNT carriers. The enzymatic activity is found to increase with the number of enzyme layers. The new protocol is illustrated for monitoring sandwich hybridization and antibody-antigen interactions in connection with alkaline phosphatase tracers. Factors affecting the enzyme loading and the analytical performance have been optimized. Such amplified bioelectronic assays allow detection of DNA and proteins down to 80 copies (5.4 aM) and 2000 protein molecules (67 aM), respectively. Given the enormous amplification afforded by the new CNT-LBL biolabel, such route offers great promise for ultrasensitive detection of infectious agents and disease markers.  相似文献   

7.
徐冬梅  吴华强  王谦宜  王强  牛贝  胡宗铭 《功能材料》2007,38(11):1777-1779
采用湿化学法制备了碳纳米管负载组成可控的FexCo81-xNi19纳米复合材料,用XRD、TEM、SAED和EDX等技术进行表征,并用VSM测试样品的磁性能.结果表明,FexCo81-xNi19合金以颗粒状均匀分散在碳纳米管表面;当x=21、33、46时,FeCoNi合金均为体心立方和面心立方两相共存;其磁性能与合金的组成密切相关,随着合金中Fe含量的增加,矫顽力(Hc)下降,饱和磁化强度(Ms)显著增加;当x=46时,合金的磁性能最佳.  相似文献   

8.
水热合成碳纳米管的电化学储氢性能研究   总被引:1,自引:0,他引:1  
采用水热法制备了多壁碳纳米管(MCNTs)。以X射线衍射、透射电子显微镜等手段对所制碳纳米管进行了表征:管直径在50 nm左右,长度多为5~20μm,管壁厚度一般不超过10nm。电化学测试表明碳纳米管的放电容量约为398mAh.g-1,相当于1.5%的储氢量。  相似文献   

9.
Liposomes labeled with biotin and the enzyme horseradish peroxidase (HRP) are used as a probe to amplify the sensing of antigen-antibody interactions or oligonucleotide-DNA binding. The HRP-biocatalyzed oxidation of 4-chloro-1-naphthol (1) in the presence of H2O2, and the precipitation of the insoluble product 2 on electrode supports, are used as an amplification route for the sensing processes. The anti-dinitrophenyl antibody (DNP-Ab) is sensed by a dinitrophenyl-L-cysteine antigen monolayer associated with an Au electrode. A biotinylated anti-IgG-antibody (Fc-specific) is linked to the antigen-DNP-Ab complex, and the biotin-labeled HRP-liposomes associate with the assembly through an avidin bridge. The biocatalyzed precipitation of 2 on the electrode increases the electron-transfer resistances at the electrode-solution interface or the electrode resistance itself. The binding events of the different proteins on the electrode and the biocatalyzed precipitation of 2 on the conductive support are followed by Faradaic impedance spectroscopy or constant-current chronopotentiometry. DNP-Ab concentrations as low as 1 x 10(-11) g x mL(-1) can be detected by this method. The labeled liposomes were also used for the amplified detection of DNA 3. The oligonucleotide 4, complementary to a part of the target DNA 3 that is a model nucleic acid sequence for the Tay-Sachs genetic disorder, is assembled on an Au electrode. Hybridization of the analyte 3 followed by the association of the biotin-tagged oligonucleotide 5 yields a three-component double-stranded assembly. Sensing of the analyte 3 is amplified by the association of avidin, the labeled liposomes, and the subsequent biocatalyzed precipitation of 2 on the electrodes. The DNA 3 is detected with a sensitivity that corresponds to 6.5 x 10(-13) M. Faradaic impedance spectroscopy and chronopotentiometry were employed to follow the stepwise assembly of the systems and the electronic transduction of the detection of the analyte DNA 3.  相似文献   

10.
Scanning electrochemical microscopy (SECM) was used to study horseradish peroxidase (HRP) immobilized with copolymer on insulating substrates (glass slide or polycarbonate membrane filter). Two methods were used to immobilize HRP: In the first, HRP was coimmobilized by cross-linking on a glass slide with a copolymer swelled in water to form a hydrogel; in the second, the same copolymer and avidin were coimmobilized on the glass slide and biotin-labeled HRP was conjugated to the avidin of the film. SECM was then used to detect the presence of the bound enzyme by observing the feedback current in a solution of benzoquinone and hydrogen peroxide, when hydroquinone was generated at the tip. A detection limit less than 7 x 10(5) HRP molecules within a approximately 7-microm-diameter area was demonstrated.  相似文献   

11.
Carbon nanotube structures such as tube diameter, growth site, and formation density are controlled using radio-frequency (RF, 13.56 MHz) plasma enhanced chemical vapor deposition (RF-PECVD) method. We have produced uniformly well-aligned multi-walled carbon nanotubes (MWNTs) grown over the large scale area and linearly arrayed MWNTs grown in a selected area without any highly-sophisticated patterning process. In our RF-PECVD experiment, furthermore, individually grown single-walled carbon nanotubes (SWNTs) or their thin bundles are synthesized for the first time within the scope of the PECVD methods. These results indicate that PECVD method provides the high potential for the further development of nano-technology.  相似文献   

12.
Epidermal growth factor receptor (EGFR) is a cell surface protein overexpressed in cancerous cells. It is known to be the most common oncogene. EGFR concentration also increases in the serum of cancer patients. The detection of small changes in the concentration of EGFR can be critical for early diagnosis, resulting in better treatment and improved survival rate of cancer patients. This article reports an RNA aptamer based approach to selectively capture EGFR protein and an electrical scheme for its detection. Pairs of gold electrodes with nanometer separation were made through confluence of focused ion beam scratching and electromigration. The aptamer was hybridized to a single stranded DNA molecule, which in turn was immobilized on the SiO(2) surface between the gold nanoelectrodes. The selectivity of the aptamer was demonstrated by using control chips with mutated non-selective aptamer and with no aptamer. Surface functionalization was characterized by optical detection and two orders of magnitude increase in direct current (DC) was measured when selective capture of EGFR occurred. This represents an electronic biosensor for the detection of proteins of interest for medical applications.  相似文献   

13.
新型碳纳米管复合物的开发及其在电化学生物传感器中的应用是近年来材料学和分析领域的研究热点.介绍了碳纳米管复合物在电化学生物传感领域的研究发展,重点对碳纳米管与纳米颗粒、聚合物及离子液体复合材料在电化学生物传感中的应用进行了论述.  相似文献   

14.
Jinbo Wu  Zhenghe Xu 《Thin solid films》2010,518(12):3240-3245
The electrochemical properties of ferrocene (Fc) on a glassy carbon (GC) electrode modified by multi-walled carbon nanotubes (MWNTs) in the presence and absence of surfactants have been investigated by progressively voltammetric sweeping. Dihexadecyl phosphate (DHP) and hexadecyl trismethyl ammonium chloride (HTAC) are found to impact the redox reactions of Fc adsorbed on MWNT surfaces. An excess amount of DHP dispatches Fc from MWNTs surfaces, leading to weakly adsorbed configuration of Fc. The formal potential of the adsorbed Fc in the presence of DHP shifts to a lower potential. Cationic surfactant HTAC on MWNT surfaces depresses the redox reactions corresponding to the weakly adsorbed configuration of Fc. It becomes evident that the configuration and hence redox reactions of Fc depend strongly on the presence and concentrations of surfactants on the electrode surfaces and in the buffer solutions.  相似文献   

15.
Plasma enhanced chemical vapor deposition (PECVD), which enables growth of vertically aligned carbon nanotubes (CNTs) directly onto a solid substrate, is considered to be a suitable method for preparing CNTs for nanoelectronics applications such as electron sources for field emission displays (FEDs). For these purposes, establishment of an efficient CNT growth process has been required. We have examined growth characteristics of CNTs using a radio frequency PECVD (RF-PECVD) method with the intention to develop a high efficiency process for CNT growth at a low enough temperature suitable for nanoelectronics applications. Here we report an effect of pretreatment of the catalyst thin film that plays an important role in CNT growth using RF-PECVD. Results of this study show that uniform formation of fine catalyst nanoparticles on the substrate is important for the efficient CNT growth.  相似文献   

16.
A modified electrode based on gold nanoparticles decorated multiwall carbon nanotubes (MWNTs), MWNT-Au(nano)-ME is fabricated. MWNTs are functionalized with 4-aminothiophenol and coated over the glassy carbon electrode. Further, Au nanoparticles are deposited into MWNTs coated GC electrode by electrochemical reduction of HAuCl4. Field emission transmission electron microscope (FETEM) image shows the formation of approximately 5 nm sized Au nanoparticles without any agglomeration on the MWNTs surface. Further, the presence of Au nanoparticles is confirmed through X-ray photoelectron spectroscopic (XPS) studies. The electrocatalytic activity of the MWNT-Au(nano)-ME towards the detection of glucose is investigated. MWNT-Au(nano)-ME shows enhanced current response than pristine MWNT-ME over the entire (+0.05 to +0.80 V) potential range. The modified electrode shows linear response to current with the concentration of glucose between 1 and 20 mM. Larger current responses to glucose oxidation are witnessed at +0.60 V than at +0.05 V. However, a large interference signal, reflecting the accelerated oxidation of electroactive interference is observed at +0.60 V. No overlapping signal from the interferents such as ascorbic acid, acetaminophen, and dopamine are observed at the MWNT-Au(nano)-ME at +0.05 V. Further, the MWNT-Au(nano)-ME shows high resistance to the toxictiy of chloride ions.  相似文献   

17.
Zhang Q  Yang S  Zhang J  Zhang L  Kang P  Li J  Xu J  Zhou H  Song XM 《Nanotechnology》2011,22(49):494010
A novel hybrid nanomaterial (GO-MWNTs) was explored based on the self-assembly of multiwall carbon nanotubes (MWNTs) and graphene oxide (GO). Compared with pristine MWNTs, such a nanocomposite could be well dispersed in aqueous solution and exhibit a negative charge. Driven by the electrostatic interaction, positively charged horseradish peroxidase (HRP) could then be immobilized onto GO-MWNTs at the surface of a glassy carbon (GC) electrode to form a HRP/GO-MWNT/GC electrode under mild conditions. TEM was used to characterize the morphology of the GO-MWNT nanocomposite. UV-vis and FTIR spectra suggested that HRP was immobilized onto the hybrid matrix without denaturation. Furthermore, the immobilized HRP showed enhanced direct electron transfer for the HRP-Fe(III)/Fe(II) redox center. Based on the direct electron transfer of the immobilized HRP, the HRP/GO-MWNT/GC electrode exhibited excellent electrocatalytic behavior to the reduction of H(2)O(2) and NaNO(2), respectively. Therefore, GO-MWNTs could provide a novel and efficient platform for the immobilization and biosensing of redox enzymes, and thus may find wide potential applications in the fabrication of biosensors, biomedical devices, and bioelectronics.  相似文献   

18.
The growth of multi-walled carbon nanotube (MWCNT) forests was investigated using an atmospheric pressure plasma jet (APPJ) system with a mixture of helium and acetylene gases. The MWCNT forests grown on Fe catalyst were compared with those grown on Ni. The growth of MWCNT forests using Fe as the catalyst was better than the growth of MWCNT forests using Ni. The MWCNT forests grown using Fe catalyst and with a plasma power of 30 W were about 17 ± 9% taller than for the plasma off. We were unable to grow MWCNTs using Ni catalyst with the plasma power off; but curly MWCNTs were grown using Ni catalyst if the plasma power was 30 W. It is found that MWCNT growth is enhanced using an APPJ. The height of the forests produced using this APPJ system was also better than that reported by other researchers using either CVD or PECVD systems.  相似文献   

19.
This study demonstrates the first example of the use of a metal-free catalyst for the continuous synthesis of carbon nanotubes (CNTs) by chemical vapor deposition (CVD). In this paper silica nanoparticles produced from the thermal decomposition of PSS-(2-(trans-3,4-Cyclohexanediol)ethyl)-Heptaisobutyl substituted (POSS) were used as catalyst and ethanol was served as both the solvent and the carbon source for nanotube growth. The POSS/ethanol solution was nebulized by an ultrasonic beam. The tiny mists were continuously introduced into the CVD reactor for the growth of CNTs. The morphology and structure of the CNTs have been investigated by scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy. The obtained CNTs have a multi-walled structure with diameters mainly in the size range from 13 to 16 nm. Detailed investigations on the growth conditions indicate that the growth temperature and POSS concentration are important for achieving high-quality nanotubes, and that the existing of small amount of water in ethanol is effective to remove amorphous carbon species during the formation of CNTs. The mass production of CNTs without any metal contaminant will provide a chance for investing and understanding the intrinsic properties of CNTs and applications particularly in nanoelectronics and biomedicines.  相似文献   

20.
The ability of highly conductive hybrid carbon–fiber/carbon nanotube loaded epoxy composites to sense matrix cracking damage in situ is demonstrated. Multi-walled carbon-nanotubes (MWCNTs) are grown perpendicular to and on the surface of a woven carbon–fiber fabric using a chemical vapor deposition process. An increase in sensitivity of resistance change under interlaminar fracture is shown through a series of double cantilever beam (DCB) tests on samples prepared with MWCNTs grown on both sides of carbon–fiber fabric lamina placed at the top and bottom surfaces of an 8-layer test panel whereas samples with MWCNTs inside the samples did not show much increase in sensitivity of resistance change compared with the baseline samples without MWCNTs. The results suggest that the addition of surface positioned hierarchical carbon-nanotube lamina on composite structures has the potential for autonomic sensing of internal matrix damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号