首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two different recombinant antibodies, a single-chain variable fragment (scFv) and an antigen-binding fragment (Fab), were prepared against artemisinin (AM) and artesunate (AS) and were developed for use in an enzyme-linked immunosorbent assay (ELISA). The recombinant antibodies, which were derived from a single monoclonal antibody against AM and AS (mAb 1C1) prepared by us, were expressed by Escherichia coli cells and their reactivity and specificity were characterized. As a result, to obtain sufficient signal in indirect ELISA, a much greater amount of a first antibody was needed in the use of scFv due to the differences of the secondary antibody and conformational stability. Therefore, we focused on the development of the recombinant Fab antibodies and applied it to indirect competitive ELISA. The specificity of the Fab was similar to that of mAb 1C1 in that it showed specific reactivity toward AM and AS only. The sensitivity of the icELISA (0.16 μg/mL to 40 μg/mL for AM and 8.0 ng/mL to 60 ng/mL for AS) was sufficient for analysis of antimalarial drugs, and its utility for quality control of analysis of Artemisia spp. was validated. The Fab expression and refolding systems provided a good yield of high-quality antibodies. The recombinant antibody against AM and AS provides an essential component of an economically attractive immunoassay and will be useful in other immunochemical applications for the analysis and purification of antimalarial drugs.  相似文献   

2.
Hydrophobic interaction chromatography (HIC) was used to separate populations of recombinant IgG2 antibody that were created as a result of prolonged incubation at 40 degrees C. Antibody was separated by HIC into three major and seven minor fractions. All but one fraction was composed of antibody with distinct chemical modifications that resulted from exposure to elevated temperature. The results of intact and reduced mass analysis as well as peptide map data derived from the three major HIC fractions indicated that the antibody was being chromatographically separated into populations containing a succinimidyl intermediate in complementarity determining region 1 (CDR1) on zero, one, and two light chain arms. Lower level species purified by HIC were analyzed by intact and reduced mass analysis and laser-induced fluorescence capillary electrophoresis (CE-LIF) and consisted of an antibody that was clipped in four different places in the heavy chain as well as misfolded and aggregated antibody. The potency of the recombinant antibody containing a succinimidyl intermediate on zero, one, and two light chain arms was analyzed by LANCE binding assay and a cell based in vitro bioassay, and the occurrence of this modification on one or both light chain arms was associated with a reduction in the binding affinity of the molecule to the target by approximately 10%. We show that HIC has the unique ability as a first step purification method to separate populations of antibody which are covalently modified under stability programs. The method conditions that have been developed for the HIC assay are ideal for purifying antibodies with labile modifications for the purpose of further characterization.  相似文献   

3.
A combinatory approach for the characterization of post-translational and chemical modifications in high molecular weight therapeutic proteins like antibodies and peptide-Fc fusion proteins (MW > or = 50 000 Da) is presented. In this approach, well-established techniques such as limited proteolysis, reversed-phase (RP) high-performance liquid chromatography (HPLC), and in-line mass spectrometry (MS) were combined for the characterization of a monoclonal IgG1 antibody and three different peptide-Fc fusion proteins. The one commonality of these molecules is the presence of a similarly accessible lysine residue either located in the flexible hinge region of the antibody or in the flexible linker of the peptide-Fc fusion proteins. Applying limited proteolysis using endoproteinase Lys-C resulted in the predominant cleavage C-terminal of this lysine residue. The created fragments, two identical Fab domain fragments and one Fc domain fragment derived from the IgG1 antibody and one Fc domain fragment and each of the three individual peptide moieties generated from the peptide-Fc fusion proteins, were readily accessible for complete separation by RP-HPLC and detailed characterization by in-line MS analysis. This approach facilitated rapid detection of a variety of chemical modifications such as methionine oxidation, disulfide bond scrambling, and reduction as well as the characterization of various carbohydrate chains. We found limited proteolysis followed by RP-HPLC-MS to be less time-consuming for sample preparation, analysis, and data interpretation than traditional peptide mapping procedures. At the same time, the reduced sample complexity provided superior chromatographic and mass spectral resolution than the analysis of the corresponding intact molecules or a large number of enzymatically generated fragments.  相似文献   

4.
The development of sensors to detect specific weak biological interactions is still today a challenging topic. Characteristics of carbohydrate-protein (lectin) interactions include high specificity and low affinity. This work describes the development of nanostructured impedimetric sensors for the detection of concanavalin A (Con A) binding to immobilized thiolated carbohydrate derivatives (D-mannose or D-glucose) onto screen-printed carbon electrodes (SPCEs) modified with gold nanoparticles. Thiolated D-galactose derivative was employed as negative control to evaluate the selectivity of the proposed methodology. After binding the thiolated carbohydrate to the nanostructured SPCEs, different functionalized thiols were employed to form mixed self-assembled monolayers (SAM). Electrochemical impedance spectroscopy (EIS) was employed as a technique to evaluate the binding of Con A to selected carbohydrates through the increase of electron transfer resistance of the ferri/ferrocyanide redox probe at the differently SAM modified electrodes. Different variables of the assay protocol were studied in order to optimize the sensor performance. Selective Con A determinations were only achieved by the formation of mixed SAMs with adequate functionalized thiols. Important differences were obtained depending on the chain lengths and functional groups of these thiols. For the 3-mercapto-1-propanesulfonate mixed SAMs, the electron transfer resistance varied linearly with the Con A concentration in the 2.2-40.0 μg mL(-1) range for D-mannose and D-glucose modified sensors. Low detection limits (0.099 and 0.078 pmol) and good reproducibility (6.9 and 6.1%, n=10) were obtained for the D-glucose and D-mannose modified sensors, respectively, without any amplification strategy.  相似文献   

5.
Y Li  Y Yang  X Guan 《Analytical chemistry》2012,84(15):6877-6883
Thiol groups play a significant role in various cellular functions. Cellular thiol concentrations can be affected by various physiological or pathological factors. A fluorescence imaging agent that can effectively and specifically image thiols in live cells through fluorescence microscopy is desirable for live cell thiol monitoring. Benzofurazan sulfides 1a-1e were synthesized and found to be thiol specific fluorogenic agents except 1d. They are not fluorescent but form strong fluorescent thiol adducts after reacting with thiols through a sulfide-thiol exchange reaction. On the other hand, they exhibit no reaction with other biologically relevant nucleophilic functional groups such as -NH(2), -OH, or -COOH revealing the specificity for the detection of thiols. Sulfide 1a was selected to confirm its ability to image cellular thiols through fluorescence microscopy. The compound was demonstrated to effectively image and quantify thiol changes in live cells through fluorescence microscopy using 430 and 520 nm as the excitation and emission wavelengths, respectively. The quantification results of total thiol in live cells obtained from fluorescence microscopy were validated by an high-pressure liquid chromatography/ultraviolet (HPLC/UV) total thiol assay method. The reagents and method will be of a great value to thiol redox-related research.  相似文献   

6.
Liu BH  Tsao ZJ  Wang JJ  Yu FY 《Analytical chemistry》2008,80(18):7029-7035
A monoclonal antibody (mAb) specific to ochratoxin A (OTA) was produced from a stable hybridoma cell line, 9C9H9, generated by the fusion of P3/NS1/1-AG4-1 myeloma cells with spleen cells isolated from a BALB/c mouse immunized with OTA-keyhole limpet hemocyanin. The 9C9H9 mAb belongs to the immunoglobulin G1 (kappa chain) isotype. A competitive direct enzyme-linked immunosorbent assay (cdELISA) and a competitive indirect ELISA were established for antibody characterization. The concentrations causing 50% inhibition of binding of OTA-horseradish peroxidase to the antibody by OTA, OTB, and OTC were found to be 0.32, 0.17, and 0.28 ng/mL, respectively, in the cdELISA. A sensitive and rapid mAb-based gold nanoparticle immunochromatographic strip was also developed using this mAb. This strip has a detection limit of 5 ng/mL for OTA and can be completed in 10 min. Analysis of OTA in coffee samples revealed that data obtained from immunochromatographic strip were in a good agreement with those obtained from cdELISA. The mAb-based cdELISA and immunochromatographic strip assay established in this study were sensitive and accurate for rapid screening of OTA in coffee samples.  相似文献   

7.
A novel, nonreducible thioether bridge between the light and heavy chains of different IgG1 monoclonal antibodies has been characterized. An additional band with an apparent molecular weight of 92 kDa was detected when monoclonal antibodies were analyzed by reducing capillary gel electrophoresis (rCGE) and reducing SDS-PAGE. To further investigate this observation, an early-eluting peak in the size exclusion chromatogram of a reduced and alkylated monoclonal antibody was collected and characterized by liquid chromatography, mass spectrometry, and gel electrophoresis. The reduced and alkylated Mab was shown to be a cross-linked adduct with a molecular weight of 75 kDa. In the adduct, the heavy and light chains of the antibody were cross-linked by a nonreducible thioether bond between Cys-223 of the heavy chain and the C-terminal Cys residue of the light chain. The thioether bond modification was confirmed in the Fab fragment of a monoclonal antibody by LC-MS and nonreduced Lys-C peptide mapping with tandem mass spectrometry. The data show that the disulfide bond modification occurred under nonreducing conditions and was not an artifact of sample preparation for the rCGE analysis. The thioether bond modification was observed in several IgG1 monoclonal antibody products. Structural characterization of this novel modification is important in understanding the mechanism of thioether bond formation.  相似文献   

8.
In this study, our goal was to produce a self-assembled layer on a gold electrode that would enable the capture of antibodies orientated for maximum binding to their specific antigen in an immunosensor. To achieve this, the amine groups from lysine residues in protein G were initially converted to thiol groups with 2-iminothiolane. The high affinity of thiols for a gold surface facilitates the direct formation of a self-assembled protein G layer. Following this, the coated gold electrode was exposed to a solution of capture antibody (mAb1) so that these antibodies could attach to the protein G layer through their nonantigenic regions, leaving antigen binding sites available with minimal steric hindrance for binding of target analyte. A comparative study between this method and the more conventional strategy of covalently attaching a layer of nonthiolated protein G on an alkanethiol self-assembled monolayer-coated gold electrode has been performed. Based on a reduced preparation time, and an enhanced capacity for immobilized capture antibody to bind its target analyte due to a more favorable orientation, the layer of thiolated protein G was found to be a more suitable backbone for an electrochemical immunosensor.  相似文献   

9.
Nan T  Wu S  Zhao H  Tan W  Li Z  Zhang Q  Wang B 《Analytical chemistry》2012,84(10):4327-4333
Ginsenoside Re (GRe) is a major active component of the Chinese medicinal herb ginseng, Panax ginseng . A sensitive and specific monoclonal antibody (mAb), designated as mAb3D6, was generated with a GRe-bovine serum albumin conjugate as an immunogen. Microcantilever immunosensors (MCS), one modified with thiolated anti-GRe antibody and one modified with thiolated goat antimouse immunoglobulin G (IgG), were developed to detect the content of ginsenoside. The MCS immobilized with thiolated goat antimouse IgG had a better sensitivity than the MCS modified with thiolated anti-GRe antibody. The advantage of a secondary antibody thio-functionalized MCS was verified with the anti-paclitaxel mAb. An indirect competitive enzyme-linked immunosorbent assay (icELISA) was also established with mAb3D6. The concentration of analyte producing 50% inhibition and the working range of icELISA were 1.20 and 0.15-16.1 ng/mL, respectively. The icELISA had a cross-reactivity of 89% with ginsenoside Rg1 and less than 3% with other ginsenosides. The icELISA and MCS with thiolated secondary antibody were applied for the determination of GRe in ginseng samples, and the results agreed well with those determined by high-performance liquid chromatography.  相似文献   

10.
Liquid chromatography tandem mass spectrometry (LC-MS/MS) has been shown to be a viable tool for preclinical pharmacokinetic (PK) analysis of monoclonal antibody (mAb) therapeutics. This work describes free and total PK assays for the mAb PF-00547,659 in serum of ulcerative colitis patients in a First-In-Human study [Vermeire, S. et al. Gut2011, 60 (8), 1068-1075]. The assay to measure free PF-00547,659 used immuno-enrichment with a biotinylated anti-idiotypic antibody and streptavidin magnetic beads. The total assay used enrichment by protein G magnetic beads. Following elution of PF-00547,659 from the beads, addition of an extended sequence stable isotope labeled peptide and trypsin digestion, a proteotypic peptide derived from the CDR region of the light chain of PF-00547,659 was quantified by LC-MS/MS. The free assay had a calibration range from 7.03 ng/mL to 450 ng/mL. The assay was precise and accurate with interbatch imprecision <16.5%, and interbatch inaccuracy <13.7% at all concentrations investigated during assay qualification. Results from LC-MS/MS methodologies are compared with historical immunoassay data originally acquired during the course of the clinical study. PK parameter estimates were highly correlated between the two analytical approaches. This work provides precedence that immunoaffinity LC-MS/MS can effectively be used to measure the serum concentrations of mAb therapeutics in clinical studies.  相似文献   

11.
This paper is part 2 of a three-part series of papers addressing operational techniques for applying mass integration design in industry with special focus on water conservation and wastewater reduction. This paper presents a design technique for any number of wastewater streams containing multiple contaminants. The technique comprises a single non-linear optimization program to minimize the wastewater discharged (or maximize the amount of recycled wastewater). This program is developed based on general water allocation principles and uses the transshipment model theory to allow the "shipment" of wastewater (referred to as "sources" or "warehouses") to process water users (referred to as "sinks", "demands" or "customers"). A detailed case study of industrial significance, highlighting land treatment technology, is included to illustrate the proposed methodology and various process scenarios are evaluated within this case study to demonstrate the general applicability of the proposed optimization program.  相似文献   

12.
Global amine and acid functional group modification of proteins   总被引:1,自引:0,他引:1  
A sequential reaction methodology is employed for the complete derivatization of protein thiols, amines, and acids in high purity under denaturing conditions. Following standard thiol alkylation, protein amines are modified via reductive methylation with formaldehyde and pyridine-borane. Protein acids are subsequently amidated under buffered conditions in DMSO using the coupling reagent (7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate. The generality of the approach is demonstrated with four proteins and with several amines yielding near-quantitative transformations as characterized by high-resolution Fourier transform mass spectrometry. The developed approach has numerous implications for protein characterization and general protein chemistry. Applications in mass spectrometry (MS) based proteomics of intact proteins (top-down MS) are explored, including the addition of stable isotopes for relative quantitation and protein identification through functional group counting. The methodology can be used for altering the physical and chemical properties of proteins, as demonstrated with amidation to modify protein isoelectric point and through derivatization with quaternary amines. Additionally, the chemistry has applications in the semisynthesis of monodisperse polymers based on protein scaffolds. We prepare proteins modified with azides and alkynes to enable further functionalization via copper(I)-catalyzed 1,3-dipolar Huisgen cycloaddition ("click") chemistry.  相似文献   

13.
During purification process development and analytical characterization, a recombinant human monoclonal antibody, referred to as rmAb1, showed an anomalous charge heterogeneity profile by cation-exchange chromatography (CIEC), characterized by extremely high retention and poor resolution between charge variants. Mass spectrometry-based footprinting methodologies that include selective labeling of lysine with sulfosuccinimidyl acetate and arginie with p-hydroxyphenylglyoxal were developed to map the positive charges on the rmAb1 surface. On the basis of the average percentages of labeling obtained for the lysine and arginine residues by peptide mapping analysis, the positive charges were more distributed on the surface in the Fab region than in the Fc region of rmAb1. By a comparative study of in-solution and on-resin labeling reaction dynamics, seven positively charged residues were identified to bind to the cation-exchange resin and they were located in the variable domains. Among them, three lysine and one arginine residues appeared to cluster together on the surface to form a positive charge patch. When the charge patch residues were neutralized by chemical labeling, rmAb1 exhibited a more typical CIEC retention time, confirming that the charge patch was responsible for the atypical CIEC profile of rmAb1. To our knowledge, this work is the first report revealing the amino acid composition of a surface charge patch on therapeutic monoclonal antibodies.  相似文献   

14.
Insulin and related synthetic therapeutics have been prohibited by the World Anti-Doping Agency for athletes demonstrably not suffering from diabetes mellitus. The primary specimen for doping controls has been urine, but the renal excretion of intact human insulin as well as synthetic analogues such as the rapid-acting products Humalog LisPro, Novolog Aspart, and Apidra Glulisine has been reported negligible owing to metabolic degradation. Nevertheless, employing solid-phase extraction in combination with immunoaffinity purification followed by a top-down sequencing-based mass spectrometric approach, an assay was established allowing the identification of three intact rapid-acting synthetic insulins in doping control urine samples. A volume of 25 mL of urine was concentrated, insulin analogues were isolated from the concentrate by immunoaffinity chromatography, and the eluate was analyzed using microbore liquid chromatography/tandem mass spectrometry. Characteristic product ion spectra obtained from 5-fold protonated intact analytes as well as isolated insulin B-chains allowed the unambiguous identification of target analytes with detection limits of 0.05 ng/mL (9 fmol/mL). Moreover, assay validation demonstrated recoveries between 72 and 80% for Humalog LisPro, Novolog Aspart, and Apidra Glulisine, and assay precisions ranged from 9 to 16%. A reliable tool is provided that allows the qualitative determination of rapid-acting insulins in urine specimens collected for sports drug testing.  相似文献   

15.
Huang GS  Chen YS  Yeh HW 《Nano letters》2006,6(11):2467-2471
We measured the flexibility of Fab and Fc arms of immunoglobulin using gold nanoparticles (GNPs). Enzyme-linked immunosorbent assay was performed to measure the affinity of anti-5 nm GNP antiserum against various sizes of GNPs. The flexibility of Fc was also measured by electron microscopy. The restricted binding affinity indicated that only a very limited amount of freedom was allowed for the Fab-Fab hinge, while Fab-Fc showed a much larger degree of freedom.  相似文献   

16.
Seiwert B  Karst U 《Analytical chemistry》2007,79(18):7131-7138
A method for the simultaneous determination of a series of thiols and disulfides in urine samples has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. The sample is first exposed to N-(2-ferroceneethyl)maleimide, thus leading to the derivatization of free thiol groups in the sample. After quantitative reaction and subsequent reduction of the disulfide-bound thiols by tris(2-carboxyethyl)phosphine, the newly formed thiol functionalities are reacted with ferrocenecarboxylic acid-(2-maleimidoyl)ethylamide. The reaction products are determined by LC/MS/MS in the multiple reaction mode, and precursor ion scan as well as neutral loss scan is applied to detect unknown further thiols. The method was successfully applied to the analysis of free and disulfide-bound thiols in urine samples. Limits of detection are 30 to 110 nM, and the linear range comprises two decades of concentration, thus covering the relevant concentration range of thiols in urine samples. The thiol and disulfide concentrations were referred to the creatinine content to compensate for different sample volumes. As some calibration standards for the disulfides are not commercially available, they were synthesized in an electrochemical flow-through cell. This allowed the synthesis of hetero- and homodimeric disulfides.  相似文献   

17.
Minor N-linked glycans containing N-glycolylneuraminic acid residues and/or α-Gal epitopes (i.e., galactose-α1,3-galactose residues) have been reported to be present in recombinant monoclonal antibody (mAb) therapeutics. These contaminations are due to their production processes using nonhuman mammalian cell lines in culture media containing animal-derived materials. In case of the treatment of tumors, we inevitably use such mAbs by careful risk-benefit considerations to prolong patients' lives. However, expanding their clinical applications such as for rheumatism, asthma, and analgesia demands more careful evaluation of the product characteristics. The present work for detailed evaluations of N-glycans demonstrates the methods using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and a combination of high-performance liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The CE-LIF method provides excellent separation of both major and minor N-glycans from six commercial mAb pharmaceuticals within 30 min and clearly indicates that a possible trigger of immunogenicity in humans due to the presence of nonhuman N-glycans is present. We strongly believe that the proposed method will be a powerful tool for the analysis of N-glycans of recombinant mAb products in various development stages, such as clone selection, process control, and routine release testing to ensure safety and efficacy of the products.  相似文献   

18.
Resonance Raman (RR) and surface-enhanced Raman scattering (SERS) spectroscopy have been used to study immobilization of laccase on self-assembled monolayers (SAMs) of thiols containing carboxylic and amino groups, deposited on silver and gold electrodes. A new, indirect way of monitoring laccase bound to the thiol-coated Ag and Au surfaces is presented. It was demonstrated that by recording the resonance Raman spectra of the colored product of the oxidation of syringaldazine (4-hydroxy-3,5-dimethoxybenzaldehydeazine) by laccase in the presence of molecular oxygen, one may easily confirm binding as well as enzymatic activity of laccase immobilized on the SAMs modified silver and gold surfaces.  相似文献   

19.
A generalized earthquake-wave-motion model is established in this study, which considers 3D random heterogeneous media, together with existing models for sources and realistic geological profiles for sedimentary basins and irregular topography. The model can be used not only to examine the influences of random heterogeneous media, but also to explore the multiple interactions of source, site (irregularity and/or heterogeneity), and wave interference on spatial variations of ground motion.

Specifically, the earth is modeled as a layered half-space with 3D weak-random heterogeneity media. Seismic waves are generated by a shear-dislocation source buried in one of the layers and then propagated through the modeled earth medium. A first-order perturbation approach together with wave propagation theory is used to solve the problem at hand for wave motion response, which is found as the superposition of the mean and scattered wave responses. The mean wave response is obtained as a wave-motion solution for a layered half-space without heterogeneity subjected to a buried seismic dislocation source. The scattered wave field is obtained as a wave-motion solution for the same layered half-space without heterogeneity subjected to virtual distributed body forces that mathematically replace the heterogeneity. The explicit expressions for the responses in both mean and scattered wave fields are derived in this study. A computational procedure for the wave-motion responses is also presented in detail.  相似文献   


20.
MutS protein is a mismatch binding protein that recognizes mispaired and unpaired base(s) in DNA. In this study, we incorporate the MutS protein-based mutation recognition into quartz crystal microbalance (QCM) measurements for DNA single-base substitution mutation and 1-4 base(s) insertion (or deletion) mutation detection. The method involves the immobilization of single-stranded probe DNA on a QCM surface, the hybridization of target DNA to form homoduplex or heteroduplex DNA, and finally the application of MutS protein for the mutation recognition. By measuring the MutS binding signal, DNA containing a T:G mismatch or unpaired base(s) is(are) discriminated against perfectly matched DNA at target concentrations ranging from 1nM to 5 microM. Furthermore, the QCM damping behavior upon MutS-DNA complex formation is studied using a Network Analyzer. The measured motional resistance changes per coupled MutS unit mass (deltaR/deltaf) are found to be indicative of the viscoelastic or structural properties of the bound protein, corresponding to different binding mechanisms. In addition, the deltaR/deltaf values vary remarkably when the MutS protein binds at different distances away from the QCM surface. Thus, these values can be used as a "fingerprint" for MutS mismatch recognition and also used to quantitatively locate the mutation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号