首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Matthias Möller 《Computing》2013,95(5):425-448
This paper is concerned with the extension of the algebraic flux-correction (AFC) approach (Kuzmin in Computational fluid and solid mechanics, Elsevier, Amsterdam, pp 887–888, 2001; J Comput Phys 219:513–531, 2006; Comput Appl Math 218:79–87, 2008; J Comput Phys 228:2517–2534, 2009; Flux-corrected transport: principles, algorithms, and applications, 2nd edn. Springer, Berlin, pp 145–192, 2012; J Comput Appl Math 236:2317–2337, 2012; Kuzmin et al. in Comput Methods Appl Mech Eng 193:4915–4946, 2004; Int J Numer Methods Fluids 42:265–295, 2003; Kuzmin and Möller in Flux-corrected transport: principles, algorithms, and applications. Springer, Berlin, 2005; Kuzmin and Turek in J Comput Phys 175:525–558, 2002; J Comput Phys 198:131–158, 2004) to nonconforming finite element methods for the linear transport equation. Accurate nonoscillatory approximations to convection-dominated flows are obtained by stabilizing the continuous Galerkin method by solution-dependent artificial diffusion. Its magnitude is controlled by a flux limiter. This concept dates back to flux-corrected transport schemes. The unique feature of AFC is that all information is extracted from the system matrices which are manipulated to satisfy certain mathematical constraints. AFC schemes have been devised with conforming $P_1$ and $Q_1$ finite elements in mind but this is not a prerequisite. Here, we consider their extension to the nonconforming Crouzeix–Raviart element (Crouzeix and Raviart in RAIRO R3 7:33–76, 1973) on triangular meshes and its quadrilateral counterpart, the class of rotated bilinear Rannacher–Turek elements (Rannacher and Turek in Numer Methods PDEs 8:97–111, 1992). The underlying design principles of AFC schemes are shown to hold for (some variant of) both elements. However, numerical tests for a purely convective flow and a convection–diffusion problem demonstrate that flux-corrected solutions are overdiffusive for the Crouzeix–Raviart element. Good resolution of smooth and discontinuous profiles is attested to $Q_1^\mathrm{nc}$ approximations on quadrilateral meshes. A synthetic benchmark is used to quantify the artificial diffusion present in conforming and nonconforming high-resolution schemes of AFC-type. Finally, the implementation of efficient sparse matrix–vector multiplications is addressed.  相似文献   

2.
We propose an effective procedure, the first one to our knowledge, for translating a proof term of the Calculus of Inductive Constructions (CIC), into a tactical expression of the high-level specification language of a CIC-based proof assistant like coq (Coq development team 2008) or matita (Asperti et al., J Autom Reason 39:109–139, 2007). This procedure, which should not be considered definitive at its present stage, is intended for translating the logical representation of a proof coming from any source, i.e. from a digital library or from another proof development system, into an equivalent proof presented in the proof assistant’s editable high-level format. To testify to effectiveness of our procedure, we report on its implementation in matita and on the translation of a significant set of proofs (Guidi, ACM Trans Comput Log 2009) from their logical representation as coq 7.3.1 (Coq development team 2002) CIC proof terms to their high-level representation as tactical expressions of matita’s user interface language.  相似文献   

3.
Wireless sensor networks (WSNs), one of the commercial wireless mesh networks (WMNs), are envisioned to provide an effective solution for sensor-based AmI (Ambient Intelligence) systems and applications. To enable the communications between AmI sensor networks and the most popular TCP/IP networks seamlessly, the best solution model is to run TCP/IP directly on WSNs (Mulligan et al. 2009; Hui and Culler 2008; Han and Mam 2007; Kim et al. 2007; Xiaohua et al. 2004; Dunkels et al. 2004; Dunkels et al. 2004; Dunkels 2001; Dunkels et al. 2004). In this case, an IP assignment method is required to assign each sensor node a unique IP address. SIPA (Dunkels et al. 2004) is the best known IP assignment method that uses spatial relations and locations of sensor nodes to assign their IP addresses. It has been applied in Contiki (Dunkels et al. 2004), a famous WSN operating system, to support the 6LowPAN protocol. In Chang et al. (2009), we proposed the SLIPA (Scan-Line IP Assignment) algorithm to improve the assignment success rate (ASR) obtained by SIPA. SLIPA can achieve a good ASR when sensor nodes are uniformly distributed. However, if sensor nodes are deployed by other distributions, the improvements would be limited. This paper proposes a new spatial IP assignment method, called SLIPA-Q (SLIPA with equal-quantity partition), to improve SLIPA. Experiments show that, by testing the proposed method 1,000 times with 1,000 randomly deployed sensor nodes, the average ASR obtained by SLIPA-Q is over two times of that obtained by SLIPA. Under the same 88% ASR, the average numbers of sensor nodes those can be successfully assigned by SLIPA-Q, SLIPA, and SIPA are 950, 850, and 135, respectively. Comparing to previous spatial IP assignment methods, SLIPA-Q can achieve dramatic improvements in ASR for assigning IP addresses to a large set of sensor nodes.  相似文献   

4.
This work contrasts Giovanni Sartor’s view of inferential semantics of legal concepts (Sartor in Artif Intell Law 17:217–251, 2009) with a probabilistic model of theory formation (Kemp et al. in Cognition 114:165–196, 2010). The work further explores possibilities of implementing Kemp’s probabilistic model of theory formation in the context of mapping legal concepts between two individual legal systems. For implementing the legal concept mapping, we propose a cross-categorization approach that combines three mathematical models: the Bayesian Model of Generalization (BMG; Tenenbaum and Griffiths in Behav Brain Sci 4:629–640, 2001), the probabilistic model of theory formation, i.e., the Infinite Relational Model (IRM) first introduced by Kemp et al. (The twenty-first national conference on artificial intelligence, 2006, Cognition 114:165–196, 2010) and its extended model, i.e., the normal-IRM (n-IRM) proposed by Herlau et al. (IEEE International Workshop on Machine Learning for Signal Processing, 2012). We apply our cross-categorization approach to datasets where legal concepts related to educational systems are respectively defined by the Japanese- and the Danish authorities according to the International Standard Classification of Education. The main contribution of this work is the proposal of a conceptual framework of the cross-categorization approach that, inspired by Sartor (Artif Intell Law 17:217–251, 2009), attempts to explain reasoner’s inferential mechanisms.  相似文献   

5.
This work addresses the problem of fault detection and diagnosis (FDD) for a quad-rotor mini air vehicle (MAV). Actuator faults are considered on this paper. The basic idea behind the proposed method is to estimate the faults signals using the extended state observers theory. To estimate the faults, a polynomial observer (Aguilar et al. 2011; Mata-Machuca et al., Commun Nonlinear Sci Numer Simul 15(12):4114–4130, 2010, BioSystems 100(1):65–69, 2010) is presented by using the available measurements and know inputs of the system. In order to investigate the diagnosability properties of the system, a differential algebra approach is proposed (Cruz-Victoria et al., J Frankl Inst 345(2):102–118, 2008; and Martinez-Guerra and Diop, IEE P-Contr Theor Ap 151(1):130–135, 2004). The effectiveness of the methodology is illustrated by means of numerical simulations.  相似文献   

6.
In this document, we present an alternative to the method introduced by Ebner (Pattern Recognit 60–67, 2003; J Parallel Distrib Comput 64(1):79–88, 2004; Color constancy using local color shifts, pp 276–287, 2004; Color Constancy, 2007; Mach Vis Appl 20(5):283–301, 2009) for computing the local space average color. We show that when the problem is framed as a linear system and the resulting series is solved, there is a solution based on LU decomposition that reduces the computing time by at least an order of magnitude.  相似文献   

7.
The TreeRank algorithm was recently proposed in [1] and [2] as a scoring-based method based on recursive partitioning of the input space. This tree induction algorithm builds orderings by recursively optimizing the Receiver Operating Characteristic curve through a one-step optimization procedure called LeafRank. One of the aim of this paper is the in-depth analysis of the empirical performance of the variants of TreeRank/LeafRank method. Numerical experiments based on both artificial and real data sets are provided. Further experiments using resampling and randomization, in the spirit of bagging and random forests are developed [3, 4] and we show how they increase both stability and accuracy in bipartite ranking. Moreover, an empirical comparison with other efficient scoring algorithms such as RankBoost and RankSVM is presented on UCI benchmark data sets.  相似文献   

8.
A theoretical analysis tool, iterated optimal stopping, has been used as the basis of a numerical algorithm for American options under regime switching (Le and Wang in SIAM J Control Optim 48(8):5193–5213, 2010). Similar methods have also been proposed for American options under jump diffusion (Bayraktar and Xing in Math Methods Oper Res 70:505–525, 2009) and Asian options under jump diffusion (Bayraktar and Xing in Math Fin 21(1):117–143, 2011). An alternative method, local policy iteration, has been suggested in Huang et al. (SIAM J Sci Comput 33(5):2144–2168, 2011), and Salmi and Toivanen (Appl Numer Math 61:821–831, 2011). Worst case upper bounds on the convergence rates of these two methods suggest that local policy iteration should be preferred over iterated optimal stopping (Huang et al. in SIAM J Sci Comput 33(5):2144–2168, 2011). In this article, numerical tests are presented which indicate that the observed performance of these two methods is consistent with the worst case upper bounds. In addition, while these two methods seem quite different, we show that either one can be converted into the other by a simple rearrangement of two loops.  相似文献   

9.
The problem of mean square exponential stability for a class of impulsive stochastic fuzzy cellular neural networks with distributed delays and reaction–diffusion terms is investigated in this paper. By using the properties of M-cone, eigenspace of the spectral radius of nonnegative matrices, Lyapunov functional, Itô’s formula and inequality techniques, several new sufficient conditions guaranteeing the mean square exponential stability of its equilibrium solution are obtained. The derived results are less conservative than the results recently presented in Wang and Xu (Chaos Solitons Fractals 42:2713–2721, 2009), Zhang and Li (Stability analysis of impulsive stochastic fuzzy cellular neural networks with time varying delays and reaction–diffusion terms. World Academy of Science, Engineering and Technology 2010), Huang (Chaos Solitons Fractals 31:658–664, 2007), and Wang (Chaos Solitons Fractals 38:878–885, 2008). In fact, the systems discussed in Wang and Xu (Chaos Solitons Fractals 42:2713–2721, 2009), Zhang and Li (Stability analysis of impulsive stochastic fuzzy cellular neural networks with time varying delays and reaction–diffusion terms. World Academy of Science, Engineering and Technology 2010), Huang (Chaos Solitons Fractals 31:658–664, 2007), and Wang (Chaos Solitons Fractals 38:878–885, 2008) are special cases of ours. Two examples are presented to illustrate the effectiveness and efficiency of the results.  相似文献   

10.
In this paper, inspired by some types of $BL$ -algebra filters (deductive systems) introduced in Haveshki et al. (Soft Comput 10:657–664, 2006), Kondo and Dudek (Soft Comput 12:419–423, 2008) and Turunen (Arch Math Log 40:467–473, 2001), we defined residuated lattice versions of them and study them in connection with Van Gasse et al. (Inf Sci 180(16):3006–3020, 2010), Lianzhen and Kaitai (Inf Sci 177:5725–5738, 2007), Zhu and Xu (Inf Sci 180:3614–3632, 2010). Also we consider some relations between these filters and quotient residuated lattice that are constructed via these filters.  相似文献   

11.
Weighted essentially non-oscillatory (WENO) finite difference schemes, developed by Liu et al. (Comput Phys 115(1):200–212, 1994) and improved by Jiang and Shu (Comput Phys 126(1):202–228, 1996), are one of the most popular methods to approximate the solutions of hyperbolic equations. But these schemes fail to provide maximal order accuracy near smooth extrema, where the first derivative of the solution becomes zero. Some authors have addressed this problem with different weight designs. In this paper we focus on the weights proposed by Yamaleev and Carpenter (J Comput Phys 228:4248–4272, 2009). They propose new weights to provide faster weight convergence than those presented in Borges et al. (J Comput Phys 227:3191–3211, 2008) and deduce some constraints on the weights parameters to guarantee that the WENO scheme has maximal order for sufficiently smooth solutions with an arbitrary number of vanishing derivatives. We analyze the scheme with the weights proposed in Yamaleev and Carpenter (J Comput Phys 228:4248–4272, 2009) and prove that near discontinuities it achieves worse orders than classical WENO schemes. In order to solve these accuracy problems, we define new weights, based on those proposed in Yamaleev and Carpenter (J Comput Phys 228:4248–4272, 2009), and get some constraints on the weights parameters to guarantee maximal order accuracy for the resulting schemes.  相似文献   

12.
The class ${\mathcal{SLUR}}$ (Single Lookahead Unit Resolution) was introduced in Schlipf et al. (Inf Process Lett 54:133–137, 1995) as an umbrella class for efficient (poly-time) SAT solving, with linear-time SAT decision, while the recognition problem was not considered. ?epek et al. (2012) and Balyo et al. (2012) extended this class in various ways to hierarchies covering all of CNF (all clause-sets). We introduce a hierarchy ${\mathcal{SLUR}}_k$ which we argue is the natural “limit” of such approaches. The second source for our investigations is the class ${\mathcal{UC}}$ of unit-refutation complete clause-sets, introduced in del Val (1994) as a target class for knowledge compilation. Via the theory of “hardness” of clause-sets as developed in Kullmann (1999), Kullmann (Ann Math Artif Intell 40(3–4):303–352, 2004) and Ansótegui et al. (2008) we obtain a natural generalisation ${\mathcal{UC}}_k$ , containing those clause-sets which are “unit-refutation complete of level k”, which is the same as having hardness at most k. Utilising the strong connections to (tree-)resolution complexity and (nested) input resolution, we develop basic methods for the determination of hardness (the level k in ${\mathcal{UC}}_k$ ). A fundamental insight now is that ${\mathcal{SLUR}}_k = {\mathcal{UC}}_k$ holds for all k. We can thus exploit both streams of intuitions and methods for the investigations of these hierarchies. As an application we can easily show that the hierarchies from ?epek et al. (2012) and Balyo et al. (2012) are strongly subsumed by ${\mathcal{SLUR}}_k$ . Finally we consider the problem of “irredundant” clause-sets in ${\mathcal{UC}}_k$ . For 2-CNF we show that strong minimisations are possible in polynomial time, while already for (very special) Horn clause-sets minimisation is NP-complete. We conclude with an extensive discussion of open problems and future directions. We envisage the concepts investigated here to be the starting point for a theory of good SAT translations, which brings together the good SAT-solving aspects from ${\mathcal{SLUR}}$ together with the knowledge-representation aspects from ${\mathcal{UC}}$ , and expands this combination via notions of “hardness”.  相似文献   

13.
We study the exact controllability, by a reduced number of controls, of coupled cascade systems of PDE’s and the existence of exact insensitizing controls for the scalar wave equation. We give a necessary and sufficient condition for the observability of abstract-coupled cascade hyperbolic systems by a single observation, the observation operator being either bounded or unbounded. Our proof extends the two-level energy method introduced in Alabau-Boussouira (Siam J Control Opt 42:871–906, 2003) and Alabau-Boussouira and Léautaud (J Math Pures Appl 99:544–576, 2013) for symmetric coupled systems, to cascade systems which are examples of non-symmetric coupled systems. In particular, we prove the observability of two coupled wave equations in cascade if the observation and coupling regions both satisfy the Geometric Control Condition (GCC) of Bardos et al. (SIAM J Control Opt 30:1024–1065, 1992). By duality, this solves the exact controllability, by a single control, of $2$ -coupled abstract cascade hyperbolic systems. Using transmutation, we give null-controllability results for the multidimensional heat and Schrödinger $2$ -coupled cascade systems under GCC and for any positive time. By our method, we can treat cases where the control and coupling coefficients have disjoint supports, partially solving an open question raised by de Teresa (CPDE 25:39–72, 2000). Moreover we answer the question of the existence of exact insensitizing locally distributed as well as boundary controls of scalar multidimensional wave equations, raised by Lions (Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Universidad de Málaga, pp 43–54, 1989) and later on by Dáger (Siam J Control Opt 45:1758–1768, 2006) and Tebou (C R Acad Sci Paris 346(Sér I):407–412, 2008).  相似文献   

14.
The stochastic collocation method (Babu?ka et al. in SIAM J Numer Anal 45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a; SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng 17:435–454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions $O(1)$ to moderate dimensions $O(10)$ and to high dimensions $O(100)$ . The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.  相似文献   

15.
Wavelet frame based models for image restoration have been extensively studied for the past decade (Chan et al. in SIAM J. Sci. Comput. 24(4):1408–1432, 2003; Cai et al. in Multiscale Model. Simul. 8(2):337–369, 2009; Elad et al. in Appl. Comput. Harmon. Anal. 19(3):340–358, 2005; Starck et al. in IEEE Trans. Image Process. 14(10):1570–1582, 2005; Shen in Proceedings of the international congress of mathematicians, vol. 4, pp. 2834–2863, 2010; Dong and Shen in IAS lecture notes series, Summer program on “The mathematics of image processing”, Park City Mathematics Institute, 2010). The success of wavelet frames in image restoration is mainly due to their capability of sparsely approximating piecewise smooth functions like images. Most of the wavelet frame based models designed in the past are based on the penalization of the ? 1 norm of wavelet frame coefficients, which, under certain conditions, is the right choice, as supported by theories of compressed sensing (Candes et al. in Appl. Comput. Harmon. Anal., 2010; Candes et al. in IEEE Trans. Inf. Theory 52(2):489–509, 2006; Donoho in IEEE Trans. Inf. Theory 52:1289–1306, 2006). However, the assumptions of compressed sensing may not be satisfied in practice (e.g. for image deblurring and CT image reconstruction). Recently in Zhang et al. (UCLA CAM Report, vol. 11-32, 2011), the authors propose to penalize the ? 0 “norm” of the wavelet frame coefficients instead, and they have demonstrated significant improvements of their method over some commonly used ? 1 minimization models in terms of quality of the recovered images. In this paper, we propose a new algorithm, called the mean doubly augmented Lagrangian (MDAL) method, for ? 0 minimizations based on the classical doubly augmented Lagrangian (DAL) method (Rockafellar in Math. Oper. Res. 97–116, 1976). Our numerical experiments show that the proposed MDAL method is not only more efficient than the method proposed by Zhang et al. (UCLA CAM Report, vol. 11-32, 2011), but can also generate recovered images with even higher quality. This study reassures the feasibility of using the ? 0 “norm” for image restoration problems.  相似文献   

16.
This paper investigates the problem of the pth moment exponential stability for a class of stochastic recurrent neural networks with Markovian jump parameters. With the help of Lyapunov function, stochastic analysis technique, generalized Halanay inequality and Hardy inequality, some novel sufficient conditions on the pth moment exponential stability of the considered system are derived. The results obtained in this paper are completely new and complement and improve some of the previously known results (Liao and Mao, Stoch Anal Appl, 14:165–185, 1996; Wan and Sun, Phys Lett A, 343:306–318, 2005; Hu et al., Chao Solitions Fractals, 27:1006–1010, 2006; Sun and Cao, Nonlinear Anal Real, 8:1171–1185, 2007; Huang et al., Inf Sci, 178:2194–2203, 2008; Wang et al., Phys Lett A, 356:346–352, 2006; Peng and Liu, Neural Comput Appl, 20:543–547, 2011). Moreover, a numerical example is also provided to demonstrate the effectiveness and applicability of the theoretical results.  相似文献   

17.
We present several variants of the sunflower conjecture of Erd?s & Rado (J Lond Math Soc 35:85–90, 1960) and discuss the relations among them. We then show that two of these conjectures (if true) imply negative answers to the questions of Coppersmith & Winograd (J Symb Comput 9:251–280, 1990) and Cohn et al. (2005) regarding possible approaches for obtaining fast matrix-multiplication algorithms. Specifically, we show that the Erd?s–Rado sunflower conjecture (if true) implies a negative answer to the “no three disjoint equivoluminous subsets” question of Coppersmith & Winograd (J Symb Comput 9:251–280, 1990); we also formulate a “multicolored” sunflower conjecture in ${\mathbb{Z}_3^n}$ and show that (if true) it implies a negative answer to the “strong USP” conjecture of Cohn et al. (2005) (although it does not seem to impact a second conjecture in Cohn et al. (2005) or the viability of the general group-theoretic approach). A surprising consequence of our results is that the Coppersmith–Winograd conjecture actually implies the Cohn et al. conjecture. The multicolored sunflower conjecture in ${\mathbb{Z}_3^n}$ is a strengthening of the well-known (ordinary) sunflower conjecture in ${\mathbb{Z}_3^n}$ , and we show via our connection that a construction from Cohn et al. (2005) yields a lower bound of (2.51 . . .) n on the size of the largest multicolored 3-sunflower-free set, which beats the current best-known lower bound of (2.21 . . . ) n Edel (2004) on the size of the largest 3-sunflower-free set in ${\mathbb{Z}_3^n}$ .  相似文献   

18.
The cubed-sphere grid is a spherical grid made of six quasi-cartesian square-like patches. It was originally introduced in Sadourny (Mon Weather Rev 100:136–144, 1972). We extend to this grid the design of high-order finite-difference compact operators (Collatz, The numerical treatment of differential equations. Springer, Berlin, 1960; Lele, J Comput Phys 103:16–42, 1992). The present work is limitated to the design of a fourth-order accurate spherical gradient. The treatment at the interface of the six patches relies on a specific interpolation system which is based on using great circles in an essential way. The main interest of the approach is a fully symmetric treatment of the sphere. We numerically demonstrate the accuracy of the approximate gradient on several test problems, including the cosine-bell test-case of Williamson et al. (J Comput Phys 102:211–224, 1992) and a deformational test-case reported in Nair and Lauritzen (J Comput Phys 229:8868–8887, 2010).  相似文献   

19.
Gardner and Kiderlen (Adv. Math. 214:323–343, 2007) presented an algorithm for reconstructing convex bodies from noisy X-ray measurements with a full proof of convergence in 2007. We would like to present some new steps into the direction of reconstructing not necessarily convex bodies by the help of the continuity properties of so-called generalized conic functions. Such a function measures the average taxicab distance of the points from a given compact set \(K\subset \mathbb {R}^{N}\) by integration. The basic result (Vincze and Nagy in J. Approx. Theory 164:371–390, 2012) is that the generalized conic function associated to a compact planar set determines the coordinate X-rays and vice versa. Vincze and Nagy (Submitted to Aequationes Math., 2014) proved continuity properties of the mapping which sends connected compact hv-convex sets having the same axis parallel bounding box to the associated generalized conic functions. We use these results to present an algorithm for the reconstruction of compact connected hv-convex planar bodies given by their coordinate X-rays. The basic method is varied with the quota system scheme. Greedy and anti-greedy versions are also presented with examples.  相似文献   

20.
We propose a uniform method to encode various types of trees succinctly. These families include ordered (ordinal), k-ary (cardinal), and unordered (free) trees. We will show the approach is intrinsically suitable for obtaining entropy-based encodings of trees (such as the degree-distribution entropy). Previously-existing succinct encodings of trees use ad hoc techniques to encode each particular family of trees. Additionally, the succinct encodings obtained using the uniform approach improve upon the existing succinct encodings of each family of trees; in the case of ordered trees, it simplifies the encoding while supporting the full set of navigational operations. It also simplifies the implementation of many supported operations. The approach applied to k-ary trees yields a succinct encoding that supports both cardinal-type operations (e.g. determining the child label i) as well as the full set of ordinal-type operations (e.g. reporting the number of siblings to the left of a node). Previous work on succinct encodings of k-ary trees does not support both types of operations simultaneously (Benoit et al. in Algorithmica 43(4):275–292, 2005; Raman et al. in ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233–242, 2002). For unordered trees, the approach achieves the first succinct encoding. The approach is based on two recursive decompositions of trees into subtrees. Recursive decomposition of a structure into substructures is a common technique in succinct encodings and has even been used to encode (ordered) trees (Geary et al. in ACM Trans. Algorithms 2(4):510–534, 2006; He et al. in ICALP, pp. 509–520, 2007) and dynamic binary trees (Munro et al. in ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 529–536, 2001; Storm in Representing dynamic binary trees succinctly, Master’s thesis, 2000). The main distinction of the approach in this paper is that a tree is decomposed into subtrees in a manner that the subtrees are maximally isolated from each other. This intermediate decomposition result is interesting in its own right and has proved useful in other applications (Farzan et al. in ICALP (1), pp. 451–462, 2009; Farzan and Munro in ICALP (1), pp. 439–450, 2009; Farzan and Kamali in ICALP, 2011).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号