首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
基于变指数趋近律的起重机自适应滑模控制   总被引:2,自引:0,他引:2  
以起重机升降系统位置控制为目标,针对传统滑模控制中要求系统不确定因素的界为已知的缺点,将自适应控制引入传统滑模变结构控制中,通过设计自适应律对起重机升降系统参数的变化及外部扰动进行辨识,同时采用变指数趋近律进一步克服传统滑模方法中存在的抖振问题。仿真结果表明,该控制算法不仅保持了传统滑模方法良好的鲁棒性,而且提高了系统的控制精度,减小了系统的抖振。  相似文献   

2.
针对一类不确定系统的跟踪控制,设计了一种将GBF-CMAC(cerebellar model articulation controller with Gauss basis function)与滑模控制相结合的控制系统。利用符号距离和分层结构减少了神经网络所需存储器的数量,并提出了一种神经网络参数的自适应学习律。将设计的控制器用于含有不确定性和欠驱动结构的高阶柔性直线结构系统的跟踪控制,并与一般滑模控制和积分滑模控制进行了比较。实验结果表明,所设计的控制器不仅具有较好的鲁棒性,而且改善了滑模控制存在的抖振问题。同时通过调整神经网络的参数对抖振进行控制,实现了抖振和跟踪性能之间的最优选择。  相似文献   

3.
为了实现对R(o)ssler混沌系统的控制,使得系统的状态变量在有限时间内达到平衡点,将R(o)ssler混沌系统作为控制对象,提出了一种自适应滑模变结构控制策略,主要包括滑模面设计和自适应滑模控制率的设计.设计了一种比例积分滑模面,并通过李雅普诺夫稳定性理论证明了滑模动态方程的稳定性,为解决滑模控制器抖振问题设计了参数自适应的趋近律,有效地消除了滑模控制器的抖振.仿真结果显示,经自适应滑模控制后的R(o)ssler混沌系统状态能快速稳定地收敛到平衡点,并消除了控制器的抖振.结果证明该方法有效地实现了R(o)ssler混沌系统的控制,并具有良好的动态性能.  相似文献   

4.
针对工业控制中对无刷直流电机位置控制的高精度要求,研究了滑模变结构控制和神经网络相结合的控制方法.为了消除滑模变结构控制方法中存在的抖振缺点,提出了一种神经滑模控制方法.方法首先设计了一个二阶时变滑模面,使系统的初始状态就在滑模面上,可以增强系统的鲁棒性.然后,通过径向基函数神经网络学习电机的负载、干扰等参数,使滑模控制的切换控制项能随着负载参数的变化而变化,削弱了滑模变结构控制的抖振.对上述方法进行仿真,结果证明了上述方法的有效性,为无刷直流电机优化控制提供了有效手段.  相似文献   

5.
为了提高无刷直流电机调速驱动系统的性能,提出神经网络自适应滑模变结构控制策略。推导无刷直流电机端电压与转速之间的微分方程,运用滑模变结构控制理论,通过调节端电压来实现转速控制;为了有效抑制系统在滑模切换面上的抖振采用自适应算法调整滑模增益的大小;从实际应用的角度出发,利用神经网络对非线性函数的任意精度拟合性,设计径向基函数神经网络估计器对控制量中广义扰动进行动态估计。仿真和实验结果表明采用本文提出的方法控制无刷直流电机,超调量小,速度响应快,控制精度高,且系统对各种干扰和参数摄振具有较强的鲁棒性,动、静态性能均优于PID控制。  相似文献   

6.
为削弱非线性系统中由滑模控制引起的抖振现象,提出自适应动态滑模控制方案.动态滑模方法是通过设计新的切换函数或将常规滑模变结构控制中的切换函数s通过微分环节构成新的切换函数,该切换函数与系统控制输入的一阶或高阶导数有关,可将不连续项转移到控制的一阶或高阶导数中去,得到在时间上本质连续的动态滑模控制律.该方案利用自适应技术和反演法,设计动态滑模控制器,有效地削弱了系统的抖振.最后仿真结果证明了该方案是正确的.  相似文献   

7.
杨超  郭佳  张铭钧 《机器人》2018,40(3):336-345
研究了作业型AUV (自主水下机器人)的轨迹跟踪控制问题.实际作业中,水下机械手展开作业过程将引起AUV动力学性能变化,进而影响AUV轨迹跟踪控制;并且水流环境干扰亦将影响AUV轨迹跟踪控制.针对上述AUV轨迹跟踪控制问题,提出一种基于RBF (径向基函数)神经网络的AUV自适应终端滑模运动控制方法.该方法在李亚普诺夫稳定性理论框架下,采用RBF网络对机械手展开引起的AUV动力学性能变化和水流环境干扰进行在线逼近,并结合自适应终端滑模控制器对神经网络权值和AUV控制参数进行自适应在线调节.通过李亚普诺夫稳定性理论,证明AUV系统轨迹跟踪误差一致稳定有界.针对滑模控制项引起的控制量抖振问题,提出一种变滑模增益的饱和连续函数滑模抖振降低方法,以降低滑模控制量抖振.通过AUV实验样机的艏向和垂向的轨迹跟踪实验,验证了本文AUV系统控制方法和滑模降抖振方法的有效性.  相似文献   

8.
为了有效地消除传统滑模变结构产生的抖振,提出了一种新的二阶滑模变结构控制方法。该方法将Terminal滑模动态与二阶滑模有效地结合起来,使二阶滑模既具有传统滑模变结构的特点,又能有效地消除传统滑模变结构所产生的抖振。将此方法用于十字梁试验系统,仿真结果表明,该方法确实有效地消除了抖振,而且鲁棒性也很强。  相似文献   

9.
于红芸  顾文锦  杨智勇 《控制工程》2004,11(Z1):112-114
为了有效地消除传统滑模变结构产生的抖振,提出了一种新的二阶滑模变结构控制方法.该方法将Teminal滑模动态与二阶滑模有效地结合起来,使二阶滑模既具有传统滑模变结构的特点,又能有效地消除传统滑模变结构所产生的抖振.将此方法用于十字梁试验系统,仿真结果表明,该方法确实有效地消除了抖振,而且鲁棒性也很强.  相似文献   

10.
滑模变结构控制理论及其算法研究与进展   总被引:53,自引:2,他引:53  
针对近年来滑模变结构控制的发展状况,将滑模变结构控制分为18个研究方向,即滑模控制的消除抖振问题、准滑动模态控制、基于趋近律的滑模控制、离散系统滑模控制、自适应滑模控制、非匹配不确定性系统滑模控制、时滞系统滑模控制、非线性系统滑模控制、Terminal滑模控制、全鲁棒滑模控制、滑模观测器、神经网络滑模控制、模糊滑模控制、动态滑模控制、积分滑模控制和随机系统的滑模控制等.对每个方向的研究状况进行了分析和说明.最后对滑模控制的未来发展作了几点展望.  相似文献   

11.
针对被控对象的参数时变和外部扰动问题,本文融合神经网络的万能逼近能力和自适应控制技术,并结合分数阶微积分理论,提出了基于神经网络和自适应控制算法的分数阶滑模控制策略.本文采用等效控制的方法设计滑模控制律,并利用神经网络的万能逼近能力估测控制律的变化,结合自适应控制算法和分数阶微积分理论抑制传统滑模控制系统的抖震,同时根据Lyapunov稳定性理论分析了系统的稳定性,最后给出了实验结果.实验结果表明,本文提出的基于神经网络和自适应控制算法的分数阶滑模控制系统,能保持滑模控制器对系统外部扰动和参数变化鲁棒性的同时,也能有效地抑制抖震,使得系统获得较高的控制性能.  相似文献   

12.
针对一类未知的非线性系统,利用输入/输出线性化将其变换为部分线性可控系统,通过RBF神经网络对未知非线性函数进行逼近,提出了一种基于RBF神经网络的自适应滑模控制,并设计了自适应滑模控制器;提出了一种连续函数,很好地减少了抖振现象,使得闭环系统状态一致稳定最终有界。实验结果验证了方法的有效性。  相似文献   

13.
针对带有模型不确定性和未知外部干扰的四旋翼无人机轨迹跟踪控制问题,提出一种基于径向基(radial basis function, RBF)神经网络的自适应全局快速终端滑模控制方法,确保系统对期望轨迹的有限时间跟踪。该方法考虑到全局快速终端滑模控制在实际应用中的适应性和抖振问题,利用RBF神经网络替代等效控制量,以神经网络的在线学习能力补偿系统内部的不确定性和未知的外部干扰,有效地降低了系统的抖振;根据Lyapunov方法导出的自适应律在线调整神经网络权值,以保证闭环系统的稳定性。通过一系列仿真算例和飞行实验验证了该方法的有效性与可行性,结果表明:该控制方法相对于滑模控制的抖振更小,具有更好的收敛性和抗干扰能力,同时对模型的参数摄动具有更强的鲁棒性。  相似文献   

14.
抖振问题是离散滑模控制在实际系统中应用的突出障碍.根据神经网络控制的优点,采用一种基于RBF神经网络的离散滑模控制方法对地震作用下建筑结构的振动控制问题进行了研究.根据离散系统建模技术,得到了离散时间形式的状态方程,同时给出了确定切换面的方法,并推导了控制律的表达式.以一个三层剪切型建筑结构模型为例来验证所提出的离散滑模控制方法的有效性.算例分析结果表明:本文所提出的控制方法能够有效地减小结构的地震峰值响应,同时达到了削弱控制系统抖振的目的.  相似文献   

15.
不确定非线性系统的自适应反推高阶终端滑模控制   总被引:1,自引:0,他引:1  
针对一类非匹配不确定非线性系统,提出一种神经网络自适应反推高阶终端滑模控制方案.反推设计的前1步利用神经网络逼近未知非线性函数,结合动态面控制设计虚拟控制律,避免传统反推设计存在的计算复杂性问题,并抑制非匹配不确定性的影响;第步结合非奇异终端滑模设计高阶滑模控制律,去除控制抖振,使系统对于匹配和非匹配不确定性均具有鲁棒性.理论分析证明了闭环系统状态半全局一致终结有界,仿真结果表明了所提出方法的有效性.  相似文献   

16.
This paper presents a novel scheme for identification and control of an electro‐hydraulic system using recurrent neural networks. The proposed neural network has the nonlinear block control form structure. A sliding‐mode control technique is applied then to design a discontinuous controller, which is able to track a force reference trajectory. Due to the presence of an unmodelled dynamics, the standard sliding‐mode controller produces oscillations (or ‘chattering’) in the closed‐loop system. The second‐order sliding mode is used to eliminate the undesired chattering effect. Simulations are presented to illustrate the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, an adaptive chattering free neural network‐based sliding mode control (ACFN‐SMC) method is proposed for tracking trajectories of redundant parallel manipulators. ACFN‐SMC combines adaptive chattering free radial basis function neural networks (RBFN), sliding mode control with online updating the robust term parameters, and a nonlinear compensation item for reducing tracking errors. The stability of the closed‐loop system with modeling uncertainties, frictional uncertainties, and external disturbances is ensured by using the Lyapunov method. The proposed controller has a simple structure and little computation time while securing dynamic performance with expected quality in tracking trajectories of redundant parallel manipulators. In addition, the ACFN‐SMC strategy does not need to know the upper bound of any uncertainties. From the simulation results, it is evident that the proposed control strategy not only has significantly higher robustness capability for uncertainties but also can achieve better chattering elimination when compared with those using existing intelligent control schemes.  相似文献   

18.
林雷  任华彬  王洪瑞 《控制工程》2007,14(5):532-535
滑模控制(SMC)响应快,对系统参数和外部扰动呈不变性,可保证系统的渐近稳定性,但其缺点是控制存在很强的抖动;而模糊神经网络(FNN)具有模糊系统和神经网络共同的特点。将滑模控制和模糊神经网络控制有机结合,利用简单得到的学习信号对模糊神经网络进行在线学习,通过平滑切换函数实现直接自适应控制策略。对两连杆机械手的仿真研究表明,在存在模型误差和外部扰动的情况下,该方案既能达到高精度快速跟踪的目的,又能有效减小滑模控制的抖动问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号