共查询到16条相似文献,搜索用时 62 毫秒
1.
基于负荷分解和实时气象因素的短期负荷预测 总被引:2,自引:3,他引:2
根据地区气象与负荷的相关关系,从总负荷中分解出对气象不敏感的基础负荷和受气象因素影响的气象敏感负荷,并分别采用灰色系统GM(1,1)模型和基于LMBP (Levernberg–Marquardt back propagation)算法的多层前馈神经网络对二者进行建模预测。在对实时气象因素、日特征气象因素与气象敏感负荷相关性分析的基础上,重点把握某些气象因素与气象敏感负荷之间的联系。通过合理选择神经网络的输入变量,实现了基于实时气象因素的短期负荷预测。实际应用证明了所提出方法的有效性。 相似文献
2.
夏季负荷受温度等气象因素影响大,表现出随机性强、波动性大的特点。针对现有短期负荷预测模型在夏季预测精度不高的问题,提出在负荷成分分解的同时,将温度分解为日周期分量和波动分量,以此准确把握短时气象波动对夏季短期负荷预测的影响。在充分分析负荷各分量变化趋势及对整体负荷预测精度影响的基础上,针对各个负荷分量特征分别选择预测方法。在预测气象敏感负荷分量时引入温度波动分量,基于XGBoost智能算法构建预测模型。选用我国中部某市夏季历史负荷建立训练样本,对2017年8月份日96点负荷进行预测,预测结果验证了所提模型和算法的有效性。 相似文献
3.
短期负荷预测中实时气象因素的影响分析及其处理策略 总被引:19,自引:9,他引:19
短期负荷预测对于电力系统安全经济运行有着重要的作用,因此,人们一直致力于研究新的预测模型,提高预测精度。目前,实现提高预测精度这个目标的关键是如何更加合理地考虑气象因素对负荷的影响,因为气象敏感负荷在总负荷中所所占的比重越来越大。长期以来,鉴于气象部门无法提供实时温度等气象预测结果,电力系统所建立的预测模型绝大多数都是基于日特征气象因素,诸如日最高温度、最低温度等。针对短期负荷预测,作者剖析了气象因素的影响和作用,分析了处理不同阶段气象因素的策略,并提出了考虑实时气象因素的短期负荷预测新模型,该模型基于神经网络,力图寻求温度、湿度等实时气象因素与负荷曲线之间的相关关系和变化规律。实际应用表明,文中的预测模型和处理策略可以得到更加精确的预测结果。此短期负荷预测新模型也适用于超短期负荷预测。 相似文献
4.
影响电网负荷预测的因素很多,其中气象因素是主要原因之一,尤其在天气系统的转变过程中,气象因互对电网用电和短期负荷预测准确率的影响更大,对气象负荷进行了明确定义,提出了一种预计气象负荷分量的实用方法和考虑气象因素的短期负荷预测策略。 相似文献
5.
基于人工神经网络的短期负荷预测 总被引:3,自引:0,他引:3
通过仿真实验得出要提高电力系统负荷预测精度必须采用两个隐层的结论。为了避免由此而引起训练时间的增加,必须适当地限制ANN输入变量的数目,提出了一种类似于相似日方法的方法。采用某种差异评估函数,寻找最有可能与预测日负荷相似的某些天,再用ANN予以修正。 相似文献
6.
基于小波分解与气象因素影响的电力系统日负荷预测模型研究 总被引:41,自引:7,他引:41
采用小波变换对日负荷数据进行分解处理,使得数据信息相对集中,在此基础上将小波分量分解为受气象因素影响的部分与不受气象因素影响的部分之和,对受气象因素影响的部分采用咽归方法建立气象因素影响模型;对不受气象因素影响的部分,幅值大的分量建立顺归神经网络预测模型,进行重点预测,而对幅值小的分量建立线形ARMA(p,q)模型。这样不仅提高了预测精度,还能提高建模效率。 相似文献
7.
8.
智能化的短期负荷预测系统 总被引:1,自引:0,他引:1
应用模糊逻辑系统、人工神经网络和模糊专家系统等智能技术风云地某省电网设计出的具有自学习和自适应能力的短期负荷预测软件包,主要用于自负荷曲线的预测,指导生产计划制定和调度安排。该软件包是基于Windows的应用程序,具有开放式的结构和友好的人机界面。试用结果表明,该系统在进一步完善后,可望实际应用于地区和省网调度系统中。 相似文献
9.
10.
基于小波分解和人工神经网络的短期负荷预测 总被引:25,自引:9,他引:25
提出了一种基于小波分解和人工神经网络(ANN)的电力系统短期负荷预测方法.通过小波变换把负荷序列分解为不同频段的子序列,再对这些子序列分别采用相匹配的人工神经网络模型进行预测,最后综合得到负荷序列的最终预测结果.在所提出的方法中小波分解能够提取负荷的一些周期性和非线性特征,并对其进行进一步细分,根据其子序列各自所具有的规律采用相应的预测方法;而ANN对于处理非线性及无法显示明确规律的问题具有优势.经实例验证,与传统方法相比该方法具有很高的预测精度和较强的适应能力. 相似文献
11.
12.
基于气象负荷因子的Elman神经网络短期负荷预测 总被引:19,自引:0,他引:19
针对地区电网负荷易受气候影响的特点,引入气象负荷因子,提出了一种综合考虑各项气象因素.采用Elman反馈神经网络的短期负荷预测模型。由于Elman神经网络具有动态递归性能.可增强负荷预测模型的适应性。经上海电网实际数据的预测仿真计算,证明此方法与传统神经网络预测模型相比.既能减少输入变量个数,又能有效地提高预测精度。 相似文献
13.
14.
15.
常规的支持向量回归预测模型(SVR)预测算法采用人工经验的方法对RBF核函数参数、不敏感系数和惩罚系数等参数进行选取,其性能会因随机选取的参数而变得随机和不确定。人工鱼群算法的初始参数会对整个算法的优化性能产生较大影响,将粒子群优化算法和混沌机制引入常规人工鱼群算法,对其进行改进,可以提高种群多样性和全局寻优能力,避免优化算法陷入局部最优解。通过实验方法对改进型人工鱼群优化SVR预测模型的性能进行分析。结果表明,所研究的短期负荷预测精度较高,具有较好的工程应用价值。 相似文献