首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
基于负荷分解和实时气象因素的短期负荷预测   总被引:2,自引:3,他引:2  
刘旭  罗滇生  姚建刚  贺辉  张凯  刘霏 《电网技术》2009,33(12):110-117
根据地区气象与负荷的相关关系,从总负荷中分解出对气象不敏感的基础负荷和受气象因素影响的气象敏感负荷,并分别采用灰色系统GM(1,1)模型和基于LMBP (Levernberg–Marquardt back propagation)算法的多层前馈神经网络对二者进行建模预测。在对实时气象因素、日特征气象因素与气象敏感负荷相关性分析的基础上,重点把握某些气象因素与气象敏感负荷之间的联系。通过合理选择神经网络的输入变量,实现了基于实时气象因素的短期负荷预测。实际应用证明了所提出方法的有效性。  相似文献   

2.
夏季负荷受温度等气象因素影响大,表现出随机性强、波动性大的特点。针对现有短期负荷预测模型在夏季预测精度不高的问题,提出在负荷成分分解的同时,将温度分解为日周期分量和波动分量,以此准确把握短时气象波动对夏季短期负荷预测的影响。在充分分析负荷各分量变化趋势及对整体负荷预测精度影响的基础上,针对各个负荷分量特征分别选择预测方法。在预测气象敏感负荷分量时引入温度波动分量,基于XGBoost智能算法构建预测模型。选用我国中部某市夏季历史负荷建立训练样本,对2017年8月份日96点负荷进行预测,预测结果验证了所提模型和算法的有效性。  相似文献   

3.
短期负荷预测中实时气象因素的影响分析及其处理策略   总被引:19,自引:9,他引:19  
短期负荷预测对于电力系统安全经济运行有着重要的作用,因此,人们一直致力于研究新的预测模型,提高预测精度。目前,实现提高预测精度这个目标的关键是如何更加合理地考虑气象因素对负荷的影响,因为气象敏感负荷在总负荷中所所占的比重越来越大。长期以来,鉴于气象部门无法提供实时温度等气象预测结果,电力系统所建立的预测模型绝大多数都是基于日特征气象因素,诸如日最高温度、最低温度等。针对短期负荷预测,作者剖析了气象因素的影响和作用,分析了处理不同阶段气象因素的策略,并提出了考虑实时气象因素的短期负荷预测新模型,该模型基于神经网络,力图寻求温度、湿度等实时气象因素与负荷曲线之间的相关关系和变化规律。实际应用表明,文中的预测模型和处理策略可以得到更加精确的预测结果。此短期负荷预测新模型也适用于超短期负荷预测。  相似文献   

4.
影响电网负荷预测的因素很多,其中气象因素是主要原因之一,尤其在天气系统的转变过程中,气象因互对电网用电和短期负荷预测准确率的影响更大,对气象负荷进行了明确定义,提出了一种预计气象负荷分量的实用方法和考虑气象因素的短期负荷预测策略。  相似文献   

5.
采用小波变换对日负荷数据进行分解处理,使得数据信息相对集中,在此基础上将小波分量分解为受气象因素影响的部分与不受气象因素影响的部分之和,对受气象因素影响的部分采用咽归方法建立气象因素影响模型;对不受气象因素影响的部分,幅值大的分量建立顺归神经网络预测模型,进行重点预测,而对幅值小的分量建立线形ARMA(p,q)模型。这样不仅提高了预测精度,还能提高建模效率。  相似文献   

6.
兰华  常家宁  周凌  王冰  张镭 《电测与仪表》2012,49(5):48-51,84
短期负荷预测是电力系统调度和运行的基础,为了提高电力系统短期负荷预测的精度,提出了基于局部均值分解和人工神经网络的电力系统短期负荷预测方法.该方法首先对负荷序列进行局部均值分解,针对分解后具有不同特点的各PF分量设定具体的神经网络参数进行预测,将各分量的预测结果进行重构得到最终的预测结果.仿真实验表明,LMD-BP神经网络的预测方法与传统的EMD-BP神经网络方法相比具有更高的预测精度,同时也验证了该方法的实用性和有效性.  相似文献   

7.
智能化的短期负荷预测系统   总被引:1,自引:0,他引:1  
应用模糊逻辑系统、人工神经网络和模糊专家系统等智能技术风云地某省电网设计出的具有自学习和自适应能力的短期负荷预测软件包,主要用于自负荷曲线的预测,指导生产计划制定和调度安排。该软件包是基于Windows的应用程序,具有开放式的结构和友好的人机界面。试用结果表明,该系统在进一步完善后,可望实际应用于地区和省网调度系统中。  相似文献   

8.
负荷分析与短期负荷预测的研究   总被引:3,自引:0,他引:3  
短期负荷预测是EMS系统包含的内容之一。由于电力模拟市场的引入,对短期负荷预测提出了新的要求。本文在对哈尔滨地区电网负荷分析基础上,运用神经网络模型进行预测,收到良好的效果。  相似文献   

9.
基于小波分解的电力系统短期负荷预测方法研究   总被引:1,自引:0,他引:1  
为提高预测精度,提出一种基于负荷分解的电力系统短期负荷预测方法。即将负荷分成周期性不同的几部分,对分解后的各负荷序列通过相匹配的神经网络方法进行预测,并考虑温度因素的影响,采用线性回归模型对神经网络预测结果修正得到最终预测结果,预测结果与实际数据对比得出,预测方法更具准确性。  相似文献   

10.
11.
目前在短期负荷预测模型中,气象因子的应用主要是其日特征值。负荷对气象因子的响应具有实时性的特点,因此,小时气象因子在负荷预测模型中的应用对提高负荷预测精度具有积极作用。通过分析小时温度、湿度、云量、降水、风等气象因子对电力负荷的影响,并与日气象因子的影响进行对比分析,结果表明:小时气象因子对负荷的影响与日气象因子对负荷的影响特征有很大不同,尤其是在天气发生突然变化时,小时气象因子对电力负荷的影响比日气象因子的影响更加显著。建立了基于小时气象因子的神经网络短期负荷预测模型,预测效果较好。针对目前气象部门对小时气象因子的预测能力及其在实际负荷预测中的应用情况,总结了应用中存在的问题并提出改进策略。  相似文献   

12.
基于因素影响的电力系统短期负荷预报方法的研究   总被引:27,自引:4,他引:27  
文章深入研究了天气和特别事件因素对电网负荷的影响;建立了因素影响的负荷预报模型;确定了有效的算法;形成了实用化应用软件;并应用取华北地区京津唐电网。实际应用中,该方法提高了短期负荷预报精度,短期负荷预报软件达到真正的实用化水平。  相似文献   

13.
针对运城地区电网易受气象影响的特点,应用了一种具有天气敏感性的基于快速反应BP算法的神经网络预测模型,模型中合理地考虑了影响负荷变化的气温和降水量等主要气象因素,使其能够适应天气的变化。对运城地区的实际负荷进行预测,结果较好地满足了现场要求.从而验证了该模型和算法的有效性。  相似文献   

14.
本文提出了一种基于提升人工神经网络的短期负荷预测方法。该方法由一组经过训练的人工神经网络迭代组合而成。在每次迭代中,对新的人工神经网络模型进行了调整,使前期迭代的模型得到的估计值与真实值之间的误差最小化。通过仿真可知,当计算输出的模型个数大于20时,可以获得较低的预测误差,与现有方法相比具有更高的预测精度。  相似文献   

15.
应用单项预测模型进行电网负荷预测,已不能适应当前电网管理的要求。分析了应用单项人工神经网络模型进行短期负荷预测的局限性,提出了应用定权系数和变权系数组合预测模型进行短期负荷预测,并作了具体应用研究,证明其改善了应用单项人工神经网络模型对负荷变化的连续波动性体现不够的缺点。通过对广州电网的实际负荷进行仿真预测,得出预测模型和处理策略可以得到更加精确的结果。  相似文献   

16.
赵学成  王丽君  赵宇红 《湖南电力》2006,26(1):23-25,56
为提高电力系统短期负荷预测精度,综合模糊逻辑和神经网络的长处构建了基于自适应模糊神经网络的短期负荷预测模型.将该模型和算法应用于地区电网的短期负荷预测,预测效果良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号