首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶胶-疑胶法及后续硫化过程制备了Y_2O_2S:(Tb~(3+),Eu~(3+),Mg~(2+),Ti~(4+))白色长余辉发光材料,研究了煅烧温度对样品的物相、发射光谱、余辉衰减等性能的影响。结果表明:在不同煅烧温度下样品的物相均为纯Y_2O_2S相。用262 nm波长光激发样品,不同煅烧温度下制备的样品中Tb~(3+)和Eu~(3+)发射峰的位置与形状基本相同,其中位于416 nm处蓝光与544 nm处黄绿光的主发射峰归属于Tb~(3+)的~5D_3→~7F_5与~5D_4→~7F_5跃迁,位于626 nm处红光的主发射峰归属于Eu~(3+)的~5D_0→~7F_2跃迁,混合产生白光。在烧结温度为1200℃下制备的样品有最佳的色度坐标值(0.295,0.300)和余辉时间值1051s(≥1 mcd/m~2)。  相似文献   

2.
采用液相沉淀法制备了近紫外光激发的颜色可调Sr_2SiO_4:0.06Gd~(3+),0.06Tb~(3+)、Sr_2SiO_4:0.06Gd~(3+),0.06Eu~(3+)和Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)荧光粉,利用XRD、SEM、荧光光谱以及色坐标分析研究了所制备荧光粉的结构、形貌和发光性能。XRD分析表明,Sr_2SiO_4:0.06Gd~(3+),0.06Tb~(3+)、Sr_2SiO_4:0.06Gd~(3+),0.06Eu~(3+)和Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)荧光粉样品属单斜晶系。荧光光谱分析表明,Sr_2SiO_4:Gd~(3+),Tb~(3+),Eu~(3+)的激发光谱包括200~300nm的宽带吸收峰和Tb~(3+)、Eu~(3+)的系列吸收峰。在243nm、354nm紫外光激发下,Sr_2SiO_4:0.06Gd~(3+),0.06Tb~(3+)的发射光谱由Tb~(3+)的~5D_4→~7F6(490nm,蓝绿光)、~5D_4→~7F_5(548nm,绿光)和~5D_4→~7F4(588nm,黄光)跃迁发射峰组成。在243nm、364nm紫外光激发下,Sr_2SiO_4:0.06Gd~(3+),0.06Eu~(3+)的发射光谱由Eu~(3+)的~5D_0→~7F_1(591nm,橙光)、~5D_0→~7F2(614nm,红光)、~5D_0→~7F_3(652nm,红光)跃迁发射峰组成。在243nm、252nm、364nm紫外光激发下,Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)的发射光谱由Tb~(3+)的~5D_4→~7F_6(490nm,蓝绿光)、~5D_4→~7F_5 (548nm,绿光)、~5D_4→~7F_4(588nm,黄光)和Eu~(3+)的~5D_0→~7F_1(591nm,橙光)、~5D_0→~7F_2(614nm,红光)、~5D_0→~7F_3(652nm,红光)跃迁发射峰组成。色坐标分析表明,Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)是很好的近紫外光激发的三色发光荧光粉。  相似文献   

3.
Sr_3Al_2O_6:0.05Eu~(3+)荧光粉的制备及光谱性质   总被引:1,自引:0,他引:1  
《化工设计通讯》2017,(7):150-151
用高温固相反应法合成了Sr_3Al_2O_6:0.05Eu~(3+)红光荧光粉,研究了样品的发光性质。在紫外光和近紫外光激发下,样品的发射光谱为Eu~(3+)的~5D_0→~7F_J(J=0,1,2,3,4)特征发射组成。荧光粉的激发光谱由宽带峰和锐峰组成。其中宽带峰是位于紫外区的O~2→Eu~(3+)的电荷迁移跃迁,锐峰是位于近紫外和可见光区的Eu~(3+)的f-f跃迁吸收。Sr_3Al_2O_6:Eu~(3+)是一种适于紫外光激发的红光荧光粉。  相似文献   

4.
采用低温燃烧法分别制备了Y_2O_3:Eu~(3+)和钐(Sm~(3+))、铈(Ce~(3+))掺杂的Y_2O_3:Eu~(3+)红色荧光粉,并研究了反应温度及掺杂量对荧光粉性能的影响。使用激光粒度仪、X射线粉末衍射仪和荧光光谱仪,对样品的物相、粒度及发光特性进行了表征和分析。结果表明,Y_2O_3:Eu~(3+)的最佳反应温度为200℃,Sm~(3+)和Ce~(3+)掺杂Y_2O_3:Eu~(3+)的粒径分别分布在396~615 nm和531~955 nm,Sm~(3+)和Ce~(3+)的掺杂均能显著增强Y_2O_3:Eu~(3+)红色荧光粉的发光性能。  相似文献   

5.
刘晓霞  余渤  毛博  杨洁 《化学工程师》2020,34(3):66-68,87
为了得到显色改善的绿色和红色发光玻璃,本文采用高温熔融技术制备了Tb~(3+)/Gd~(3+)/Ce~(3+)/Sb~(3+)和Eu~(3+)/Bi~(3+)/Sb~(3+)共掺杂的硼硅酸盐透明玻璃。通过对共掺样品紫外可见吸收光谱的分析和长波紫外激发下的激发光谱及荧光光谱的分析,研究了Tb~(3+)/Gd~(3+)/Ce~(3+)/Sb~(3+)和Eu~(3+)/Bi~(3+)/Sb~(3+)共掺杂离子在玻璃基质中的发光性能,结果表明,在高能紫外光激发下,Tb~(3+)/Gd~(3+)/Ce~(3+)/Sb~(3+)共掺杂样品发射典型纯正绿光荧光的能力较强,Eu~(3+)/Bi~(3+)/Sb~(3+)共掺杂样品发射红光荧光的能力较强。  相似文献   

6.
通过高温固相法制备了系列Ba_2ZnW_(1-x)Mo_xO_6:Eu~(3+),Li~+红色荧光粉,研究了Mo~(6+)离子掺杂对样品的晶体结构以及荧光性能的影响。结果表明:部分Mo~(6+)离子取代W~(6+)离子后,样品的激发波长发生红移,最大激发波长从316 nm转移到373 nm,使得样品能有效地被近紫外光(350~420 nm)激发。Ba_2ZnW_(0.6)Mo_(0.4)O_6:Eu~(3+),Li~+在373 nm波长的激发下,所得的荧光强度最强。Eu~(3+)离子的特征跃迁仍以~5D_0→~7F_1(598 nm)跃迁为主,但~5D_0→~7F_2(615 nm)跃迁得以加强。通过其发射光谱计算所得色坐标为(0.6385,0.3611),接近标准红色色坐标。Ba_2ZnW_(0.6)Mo_(0.4)O_6:Eu~(3+)Li~+作为红色荧光粉在被近紫外激发的白光LED中具有很好的应用前景。  相似文献   

7.
采用溶胶凝胶-燃烧法,柠檬酸为络合剂合成出系列GdAlO_3∶Eu~(3+)和LaAlO_3∶Eu~(3+)荧光粉及GdAlO_3∶Er~(3+), Yb~(3+)上转换发光粉。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、荧光光谱和上转换发光光谱对样品的结构、形貌和发光性能进行了研究。XRD分析表明:1000℃热处理获得具有正交结构的GdAlO_3∶Eu~(3+)荧光粉和GdAlO_3∶Er~(3+),Yb~(3+)上转换发光粉及具有六方结构的LaAlO_3∶Eu~(3+)荧光粉。柠檬酸比例和热处理温度对发光粉晶粒尺寸和晶相的形成有影响。荧光光谱研究表明:荧光粉的主发射峰来自于Eu~(3+)离子的~5D_0→~7F_2跃迁。柠檬酸比例及基质阳离子影响Eu~(3+)离子的局域对称环境。GdAlO_3∶Er~(3+),Yb~(3+)上转换发光粉在980 nm红外光激发下,发射来自于Er~(3+)离子~2H_(11/2)、~4S_(3/2)到~4I_(15/2)跃迁和~4F_(9/2)到~4I_(15/2)跃迁。计算并比较了GdAlO_3∶Eu~(3+),LaAlO_3∶Eu~(3+)和GdAlO_3∶Er~(3+),Yb~(3+)样品的色坐标。  相似文献   

8.
采用高温固相法合成了一系列NaBaSi_xP_(1-x)O_4:Eu~(3+)橙红色荧光粉。表征了荧光粉的晶体结构和发光性能。考察了煅烧温度和Si~(4+)掺杂量对荧光粉结构和发光性能的影响。结果表明:掺杂Si~(4+)对荧光粉的晶型没有明显影响,但是导致了晶格膨胀。750℃煅烧时基质已形成NaBaPO_4相,晶型为六方晶系,荧光粉发射峰强度最强。激发光谱由200~280 nm的宽带和310~500 nm的一系列尖峰组成,分别对应于O~(2–)→Eu~(3+)电荷迁移带和Eu~(3+)的f→f能级跃迁吸收,最强激发峰位于393 nm左右,与近紫外LED芯片的发射光谱匹配。在393 nm近紫外光激发下,最强发射峰和次强发射峰分别位于红光616 nm和橙光591 nm附近,分别属于Eu~(3+)的~5D_0→~7F_2和~5D_0→~7F_1特征跃迁。NaBa_(0.92)Si_xP_(1–x)O_4:0.08Eu~(3+)中Si~(4+)的最佳掺杂量为0.02 mol,Na Ba_(0.92)Si_(0.02)P_(0.98)O_4:0.08Eu~(3+)样品在616和591 nm附近的发射强度比单掺杂Eu~(3+)的样品分别提高了66.6%和63.6%。  相似文献   

9.
用高温固相法合成了Ba_(2-X)b_(10)O_(17):x Eu~(3+)(x=0.04,0.08,0.12,0.16,0.20,0.24,0.28)红色荧光粉,并对此荧光粉的结构及发光特性进行了研究。结果表明,样品用λ_(ex)=406 nm激发时,在λ=702 nm处得到发光光谱,随着Eu~(3+)掺杂浓度的增大,样品的发光性能先增强后减弱。样品在x=0.20处发光性能最好,x0.20时,随着Eu~(3+)掺杂浓度的增大,样品发光性能增强;x0.20时,样品发生浓度淬灭,发光性能减弱。说明Eu~(3+)的掺杂浓度在Ba_(2-X)b_(10)O_(17):x Eu~(3+)红色荧光粉的发光性能中发挥重要的作用。  相似文献   

10.
采用高温固相法合成了K_3Lu_(1-x)Eu_xSi_2O_7(x=0.1)荧光粉。系统讨论了Eu~(3+)在K_3Lu Si_2O_7的正八面体LuO_6真空紫外-紫外-可见的激发、发射光谱及荧光寿命。结果表明,K_3Lu_(1-x)Eu_xSi_2O_7的电荷迁移带(CTB)位于~225 nm左右,基质吸收带位于~199 nm。分别在147 nm和172 nm波长激发时,发射主要以Eu~(3+)电偶极子跃迁(~5D_0-~7F_2)为主相对发光强度约为商业红粉(Y,Gd)BO_3:Eu~(3+)的55%和80%,色坐标(0.589,0.382),荧光寿命τ_(1/e)=1.78 ms,是一种潜在的应用于真空自外激发发射的红色荧光材料。  相似文献   

11.
采用水热法结合高温烧结处理制备Bi~(3+)掺杂Y_2O_3∶Eu~(3+)纳米荧光粉,并考察了掺杂Bi~(3+)对Y_2O_3∶Eu~(3+)荧光粉结构、紫外可见光吸收和发光性能的影响。X射线粉末衍射测试表明,Y_2O_3∶Eu~(3+)掺杂Bi~(3+)(摩尔分数3%)后保持纯立方相结构,纳米颗粒的平均粒径约为16.8nm。通过激发和发光光谱测试,讨论了Bi~(3+)对Eu~(3+)的敏化作用,发现Bi~(3+)离子能促进Y_2O_3∶Eu~(3+)于300~400nm的近紫外光吸收,再以能量转移的方式传给Eu~(3+)。因此,利用Bi~(3+)电荷迁移带的近紫外吸收,是实现近紫外光有效激发Y_2O_3∶Eu~(3+)荧光粉的一种重要途径。  相似文献   

12.
采用高铝高炉渣高温水淬法制备了Tb~(3+)单掺及Tb~(3+)/Ce~(3+)共掺的硅铝酸盐发光玻璃,研究了基体结构和共掺对玻璃发光性能的影响。结果表明:经过1 000℃保温4 h后,玻璃晶化为Ca_2(Mg_(0.5)Al_(0.5))(Si_(1.5)Al_(0.5)O_7),发光性能急剧下降,4%(摩尔分数) Tb~(3+)掺杂的发光玻璃发光强度最高约是晶化后的12倍。Ce~(3+)和Tb~(3+)之间通过多极相互作用传递能量,Tb~(3+)/Ce~(3+)共掺的发光玻璃发光强度最高达到Tb~(3+)单掺的约6倍。4%Tb~(3+)/1%Ce~(3+)共掺的发光玻璃在150℃时具有良好的发光热稳定性,可以作为近紫外LED激发的绿光固体发光材料。  相似文献   

13.
以硝酸锆、硝酸锂、Eu(NO_3)_3·6H_2O为原料,采用微波固相烧结法合成了系列红色荧光粉Li_6Zr_2O_7:Eu~(3+)。利用XRD和荧光光度计对样品的组成和发光性能进行了表征。考察了烧结时间、烧结温度及Eu~(3+)的含量对荧光粉发光性能的影响。XRD分析结果表明,Li_6Zr_2O_7:Eu~(3+)荧光粉为纯相晶体结构。根据离子电负性标度可知,Eu~(3+)(1.433)会优先取代电负性相近Zr~(4+)的位置(1.610)。当微波烧结时间为10 min、烧结温度为500℃、Eu~(3+)在晶体中的含量为14%时(以Li_6Zr_2O_7的物质的量为基准,下同),在465 nm激发下,制备得到的Li_6Zr_2O_7:0.14Eu~(3+)荧光粉在615 nm处产生最强的红光发射,且发射光谱在615 nm的强度是激发光谱在465 nm强度的1.54倍。此时荧光粉色坐标为X=0.65,Y=0.35,具有很高的色纯度,与商用红色荧光粉(0.63,0.34)相比更接近国家标准(0.67,0.33)。  相似文献   

14.
采用高温固相法制备新型黄色荧光粉Sr_8ZnLu(PO_4)_7:Eu~(2+), Mn~(2+)。分别通过X射线衍射,扫描电镜和荧光光谱研究了材料的物相结构,形貌和发光性能。单掺Eu~(2+)样品在250~450 nm范围内出现宽峰吸收,预示着该材料可被近紫外芯片有效激发。Eu~(2+)发射光谱峰值位于520 nm,发光猝灭的机理被确定为偶极-偶极相互作用。在Eu~(2+)-Mn~(2+)共掺样品中荧光粉展现400~700 nm范围可调的宽峰发射。研究表明Sr_8ZnLu(PO_4)_7:Eu~(2+), Mn~(2+)黄色荧光粉在近紫外芯片激活的白光LED领域有潜在应用。  相似文献   

15.
采用高温固相法制备了新型红色荧光粉NaLa_(1–x)MgTeO_6:xEu~(3+),通过X射线衍射和场发射扫描电子显微镜对粉体的结构和形貌进行了表征,测量了粉体在298~473 K温度范围的发射光谱和激发光谱,计算出能量传递的临界距离、热激活能及色品坐标值。结果表明:该粉体能被397 nm近紫外光和466 nm蓝光有效激发,并发射出Eu~(3+)的~5D_0→~7F_2跃迁产生的617 nm红光;Eu~(3+)的最佳掺杂量为40%(摩尔分数),浓度猝灭机理为电偶极–电偶极相互作用;NaLaMgTeO_6:Eu~(3+)在150℃时积分发光强度是室温的80.7%,发光热稳定性良好,发光效率高,是一种潜在高效的LED用红色荧光粉材料。  相似文献   

16.
以碳酸锂、氧化铝、二氧化硅、Eu_2O_3为原料,采用传统高温固相法在1150℃制备系列Eu~(3+)掺杂LiAlSiO_4红色荧光粉Li_(1–x)AlSiO_(4+x):xEu~(3+)(x=0.05~0.18)。利用XRD、SEM和光致发光光谱分别对其晶体结构,粉体形貌和发光性能进行了表征。考察了Eu~(3+)掺杂量对所制红色荧光粉发光强度、色温、色调的影响。结果表明:Eu~(3+)掺杂摩尔分数低于15.0%时,样品为单一基质;样品可以被近紫外350~420 nm波段高效激发,最强激发发射峰位于394 nm。发射光谱呈现出Eu~(3+)的特征峰,谱带峰值在593、616 nm处,分别对应于Eu~(3+)的~5D_0→~7F_1、~5D_0→~7F_2特征跃迁。最强发射对应Eu~(3+)掺杂摩尔分数为12.0%,浓度猝灭主要是因为四极-四极(q-q)相互作用,CIE坐标为(0.6464,0.3526),可应用于近紫外芯片激发LED用红色荧光粉。  相似文献   

17.
采用固相法制备了不同Zr~(4+)取代量的(Ba_(0.97)Eu_(0.03))(Mg_((1–x)/3)Nb_(2(1–x)/3)Zr_x)O_3荧光粉,研究了Zr~(4+)取代量对荧光粉的晶体结构以及荧光特性的影响规律。随着Zr~(4+)取代量的增加,当x=0.05时,体系发生了从六方相到立方相的转变,发光行为有所减弱;当x0.05时,体系为立方相,Zr~(4+)的引入使BO_6八面体扭转程度增强,能级简并消除,B—O成键范围变大,基质对近紫外光区域的光吸收增强,来源于基质的电荷迁移带强度增加,增强了对Eu~(3+)的敏化作用,使稀土Eu~(3+)在近紫外与蓝光区域的激发与发射均得到增强。Zr~(4+)取代后,荧光粉的色坐标由从(0.658,0.342)移动到(0.642,0.358),是一种适用于近紫外(395 nm) LED芯片激发的红色荧光粉。  相似文献   

18.
采用溶胶凝胶沉淀法制备了稀土掺杂的笼状结构铝酸盐发光材料。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对样品的物相结构及形貌进行了表征,结果表明:稀土离子的掺入没有改变发光材料的主晶相,已获得具有笼状结构的单相12CaO·7Al_2O_3发光材料,同时稀土离子可能掺入到晶格中。利用荧光光谱仪对样品的发光性能进行了测试,发现在近紫外光激发下掺杂Eu~(2+)离子的样品具有宽带发射峰,最强发射位于448nm左右,对应于Eu~(2+)离子的4f~65d~1→4f~7辐射跃迁,能够在近紫外光激发下发射出红光。另外,12CaO·7Al_2O_3:Tb~(3+)和12CaO·7Al_2O_3:Dy~(3+)能够在近紫外光激发下分别发出绿光和白光。  相似文献   

19.
采用液相沉淀法合成Y_2SiO_5∶Ce~(~(3+)),Tb~(~(3+))发光材料。采用X射线粉末衍射仪(XRD)、扫描电镜(SEM)、荧光分光光度计以及国际照明委员会(CIE)色度坐标图对其相的组成、光谱学和发光特性进行了研究。Y2Si O5∶Tb~(3+)激发光谱中存在较强的基质激发峰,在发射光谱中,发现Tb~(3+)的5D4→7FJ(J=6,5,4,3)跃迁,最大发射中心位于545nm(5D4→7F5跃迁)。在Y_2SiO_5∶Ce~(~(3+)),Tb~(~(3+))双掺体系中,Tb~(3+)的发光强度随Ce~(3+)的浓度增加而增强,存在Ce~(3+)→Tb~(3+)能量传递,尤其是Tb~(3+)的5D4→7F5跃迁发射显著增强,有望成为一种有发展前途的绿色荧光材料。  相似文献   

20.
以β-二酮为原料,利用有机配位体(β-二酮)与SrAl_2O_4发光粉中的Eu~(2+),Dy~(3+)金属离子形成配位键,制备出表面包覆有β-二酮的(SrAl_2O_4:Eu~(2+),Dy~(3+))复合发光粉体,将包覆的发光粉与聚氯乙烯(PVC)共混制成发光塑料.荧光光谱测试结果表明:包覆后的发光粉加到PVC中的发光强度几乎不受影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号