首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
840S环氧树脂体系固化反应特性   总被引:5,自引:0,他引:5       下载免费PDF全文
用差示扫描量热法(DSC) 在动态条件下对840S 环氧树脂体系的固化反应动力学进行了研究。根据所测量的不同升温速率的DSC 曲线, 运用温度升温速率( T-β) 图外推法得到该环氧树脂体系的固化工艺参数, 即凝胶化温度、固化温度、后处理温度, 这些温度参数为制定合理的固化工艺提供了理论基础。采用Kissinger 方程和Crane 方程计算该840S 环氧树脂体系的动力学参数, 即表观活化能Ea 、表观频率因子A 和反应级数n 。根据所计算的动力学参数, 建立了该840S 环氧树脂体系的固化动力学模型。利用所建立的固化动力学模型分别预测了等温和动态条件下840S 环氧树脂体系的固化反应特性。   相似文献   

2.
以聚醚胺D230为固化剂,研究了不同环氧大豆油含量(占双酚A型环氧树脂E-44的5%,10%,15%)增韧环氧树脂固化体系的反应动力学理论及流变行为。通过升温非模型中的KAS法对环氧树脂固化体系的差示扫描量热分析数据进行了研究,得出了固化动力学参数随体系环氧大豆油含量和升温速率的变化规律,并发现该反应由初期的无催化转向自催化反应,最后阶段则由化学控制转为扩散控制。通过旋转流变仪对环氧树脂固化过程进行流变分析,升温流变结果表明,体系中含有的环氧大豆油含量越多,凝胶点出现的时间越早;等温流变结果则表明,温度越高,凝胶点出现的时间越早;同时流变分析也表明,反应后期由于体系黏度过大,反应会由化学控制转变为扩散控制。通过计算,可得出环氧大豆油质量占环氧树脂10%的固化体系凝胶活化能为54.75kJ/mol。  相似文献   

3.
603环氧树脂体系固化动力学模型的建立与验证   总被引:2,自引:0,他引:2       下载免费PDF全文
采用非等温差示扫描量热法(DSC)研究了603热塑增韧环氧树脂体系的固化反应动力学。研究发现,在低升温速率测试条件下603环氧树脂体系固化反应的DSC曲线有两个重叠的放热峰,通过分离两个重叠的放热峰,研究了603环氧树脂体系固化动力学的特性。利用Kissinger方法和Kamal方程分别拟合得到603树脂体系固化反应的活化能和固化动力学参数,选择三种典型固化工艺制度下预测的树脂固化反应结果与实验数据对比,验证了所建立动力学模型的可靠性。基于不同升温速率的放热曲线,通过外推法得出该树脂占总反应比例70%的第一个反应固化温度为(177.3±2.2)℃,占总反应比例30%的第二个反应的起始温度和固化温度分别为(178.6±0.7)℃和(216.9±1.7)℃。研究结果对于多组分热固性树脂体系固化动力学的分析和复合材料成型工艺的优化具有重要的指导意义。  相似文献   

4.
采用工业碱木质素合成环氧树脂,在空气气氛下利用非等温热失重技术研究木质素基环氧树脂(LGEP)固化特征.采用自催化反应模型计算得到了LGEP体系的固化反应动力学参数,并得到LGEP体系的固化反应动力学模型.结果表明,自催化反应模型得到的模拟曲线与实验得到的DSC曲线的一致性较好.利用外推法得到了LGEP体系的固化凝胶温度Ti0 =454.88K,固化温度Tp0=507.55K,后处理温度T80=598.77K.通过比较得出实验结果与模型计算值较一致.  相似文献   

5.
联苯型环氧-酚醛树脂的恒温固化动力学研究   总被引:1,自引:1,他引:0  
采用差示扫描量热仪(DSC)对以三苯基膦为促进剂的联苯型环氧-酚醛体系进行了不同温度下的恒温固化动力学研究,然后利用经典的Kamal方程进行非线性曲线拟舍得到了相应的动力学参数:如反应级数(n)、活化能(Ea)和反应动力学常数(k).并根据Kamal方程建立了转化率α对固化时间t的自加速理论模型,发现该模型能够很好的预测联苯型环氧-酚醛体系在不同温度下随恒温时间的固化行为.  相似文献   

6.
采用非等温差示扫描量热(DSC)对多官能团环氧树脂体系固化反应进行了研究,确定了环氧树脂所用固化剂为甲基纳迪克酸酐(MNA)。对AG-70/MNA/2-乙基-4-甲基咪唑(EMI-2,4)环氧树脂体系在不同升温速率下的固化反应进行测试,根据DSC曲线,用温度-升温速率外推法,求出环氧树脂体系的三个特征温度,温度参数能为...  相似文献   

7.
采用非等温差示扫描量热法(DSC)研究沥青-环氧树脂复合材料(EA)的固化反应动力学。分别采用n级反应模型和自催化反应模型对其固化反应动力学参数进行求解,并得到固化反应动力学方程,通过T~β外推法确定EA的固化工艺和最佳固化温度。分析结果表明,自催化反应模型在5~25℃/min升温范围内更适合描述EA体系的反应动力学;该体系的最佳固化条件应为:在130℃固化2h,在160℃固化3h。  相似文献   

8.
采用等温和非等温差示扫描量热(DSC)对Huntsman1564/3486低黏度环氧树脂体系的固化反应进行了研究,建立了修正的Olivier固化度唯象模型,用于描述恒温条件下固化度温度时间关系。模型计算值与实验值符合良好。监测了基于实际工程应用背景85mm厚复合材料单面模具加热固化过程中制件厚度方向的温度情况,针对该过程提出了基于修正Olivier模型的适用于变温条件的时间离散分步计算法,并计算了固化过程厚度方向的固化度分布。  相似文献   

9.
5428双马树脂体系动态固化反应动力学研究   总被引:1,自引:0,他引:1  
采用示差扫描量热法(DSC)对5428双马树脂体系的动态固化反应动力学进行了研究,以自催化反应动力学模型为基础方程建立了动态固化反应动力学方程.并模拟实际固化温度历程,采用测定不同固化阶段样品残余反应热的方法对动态固化反应动力学方程进行了验证,结果表明动态固化反应动力学方程能反映体系实际固化反应历程.  相似文献   

10.
采用示差扫描量热法(DSC),在 25 ~ 230 ℃范围内以不同的升温速率(5,10,15, 20 ℃ / min),研究了以聚醚胺 / 酚醛胺为固化剂的环氧树脂体系的固化行为,对其不同升温速率下的固化度进行了分析,采用 T-β 外推法得出了该体系的起始固化温度、峰顶固化温度和终止固化温度等固化工艺参数。  相似文献   

11.
针对自行研制的树脂传递模塑工艺(RTM)快速成型环氧树脂,利用唯象动力学模型、DiBenedetto方程和凝胶模型研究了树脂体系的等温及非等温固化动力学,构建了时间-温度-转变(TTT)的关系图,表明树脂体系兼具较长的适用期与快速固化特性。以此设计RTM快速成型工艺,考察了树脂体系对碳纤维织物的浸润流动行为,并评价了快速成型碳纤维/环氧树脂复合材料的界面力学性能与微观形貌。结果表明,注射温度下树脂体系的浸润填充性良好,RTM快速成型碳纤维/环氧树脂复合材料的力学性能和内部成型质量较好。   相似文献   

12.
利用纳米SiO_2接枝改性环氧树脂,探索改性涂层的热降解过程与动力学模型之间的关系,以便观察其结构及了解其工作温度。利用KH550改性纳米填料,测试不同含量的纳米填料对环氧树脂热稳定性的影响。采用TGA和DTA分析纳米SiO_2改性环氧树脂复合材料热降解过程中的热特征温度,从而确定动力学参数和模型拟合方法。所获得的动力学参数被用来在整个降解过程建模。结果表明:得到的动力学三联体用于构建纳米SiO_2改性环氧树脂基复合材料的降解模型,展示了温度对降解时间以及降解速率的影响程度。得出了环氧树脂的使用寿命及其复合材料工作温度的变化范围。  相似文献   

13.
先进复合材料用环氧树脂的固化反应和化学流变   总被引:18,自引:6,他引:18       下载免费PDF全文
用等温差示扫描量热法(DSC)研究了HD03环氧树脂在一定温度范围内的固化反应。试验结果表明,该环氧树脂体系的固化动力学符合自催化固化反应模型。由试验确定了模型中的动力学参数。发现在树脂的固化后期,固化反应由化学反应控制转变为扩散控制。用以绝对反应速率理论为基础的化学粘度分析模型研究了较高温度范围内HD03环氧树脂的等温粘度和变温的动态粘度变化。用MCR 300流变仪测量并计算了HD03环氧树脂的等温粘度和动态粘度。理论预测与试验结果相吻合。   相似文献   

14.
采用非等温DSC研究了一种复合材料用环氧树脂体系的固化反应。采用n级反应模型和Malek等转化率法确定了固化反应动力学方程,通过外推法优化其固化工艺,测试优化后工艺下制备的树脂浇铸体的固化度和力学性能。结果表明,n级反应模型与实验值差别较大;采用Malek等转化率法判断固化反应按自催化反应机理进行,在2.5~15℃/min升温速率下,自催化模型计算曲线与实验曲线吻合较好;优化确定其固化工艺为70℃/2h+110℃/2h,在该工艺下制备的浇铸体固化度达98.51%,拉伸强度和弯曲强度分别为75.11MPa和128.10MPa。  相似文献   

15.
分别采用Kamal模型和Kissinger模型研究了E-51/胺基酰亚胺潜伏性固化体系的等温和非等温固化动力学,讨论了该体系的固化反应机理。结果表明,由这两种动力学模型得到的固化动力学参数基本相近,E-51/胺基酰亚胺体系固化反应起始阶段的活化能较高,约为124 kJ/mol~131 kJ/mol。该体系的固化反应包含n级反应和自催化反应。胺基酰亚胺热分解反应是E-51/胺基酰亚胺体系固化反应的控制步骤。  相似文献   

16.
采用非等温差示扫描量热(DSC)法分别对环氧树脂(EP)及可膨胀石墨/环氧树脂(EG/EP)体系的固化过程进行了研究。利用Kissinger和Crane法计算得到两种体系固化反应的表观活化能Ea、指前因子A、固化反应级数n等动力学参数,建立了固化反应动力学方程,并用T-β外推法确定了固化工艺温度。结果表明,EG的加入,降低了EP体系固化反应的完全程度,对固化反应时间的影响不大,体系的Ea由63.15 kJ/mol升高到65.89 kJ/mol,A由2.02×107提升到4.5×107,两种体系的反应级数基本一致,同时,EG的加入对体系固化工艺温度影响不大。  相似文献   

17.
实验研究表明,纤维束/环氧树脂复合材料试件的横向拉伸强度与工程上常用的单向层合板横向拉伸强度在趋势上具有很好的相关性,但是数值上存在一定差距。本文使用两种碳纤维和两种环氧树脂制备了三种纤维束/环氧树脂复合材料和单向层合板,并分别测量了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度,以及环氧基体的拉伸强度。在实验基础上,应用Griffith断裂强度理论建立了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度的关系模型,通过两种复合材料实验的结果拟合了该模型中的参数。利用第三种复合材料实验进行校验,发现该模型预测的单向层合板横向拉伸强度与实测强度之间达到很好的一致性,相对偏差为9%。采用本文提出的方法,可以用较为简单的纤维束/环氧树脂复合材料和环氧基体拉伸试验预测单向层合板的横向拉伸强度。  相似文献   

18.
环氧树脂固化动力学研究进展   总被引:6,自引:0,他引:6  
差示扫描量热仪(DSC)是研究环氧树脂固化动力学的有效手段,获得动力学参数的方法分为模型拟合法和非模型拟合法2类.模型拟合法的关键在于确定动力学三因子,即反应模型、指前因子和活化能;其拟合过程需要事先选择模型及模型参数,并且等温和非等温条件下拟合得到的动力学参数差别较大,无法通过非等温条件下的数据预测等温固化行为.非模型拟合法则通过计算活化能与固化度的对应关系研究固化行为,可以避免模型及模型参数选择不当造成的误差,并且等温和非等温条件下拟合得到的动力学参数基本一致,可由非等温数据预测等温固化行为.准确的动力学方程可为优化固化工艺、提高固化产物性能提供理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号