首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferroelectric Na0.5La0.5Bi4Ti4O15 (NaLaBTi) thin films were prepared by a chemical solution deposition method. The NaLaBTi thin films annealed at 750 °C under oxygen atmosphere were randomly oriented polycrystalline. Electrical properties of the NaLaBTi thin films were compared to Na0.5Bi4.5Ti4O15 thin films and better properties were observed in the NaLaBTi thin films. Remnant polarization (2Pr) and coercive electric field (2Ec) were 43 µC/cm2 and 204 kV/cm at an applied electric field of 478 kV/cm, respectively. Leakage current density was 1.95 × 10− 6 A/cm2 at 100 kV/cm. Dielectric constant and dielectric loss were 805 and 0.05 at 1 kHz, respectively. Switchable polarization was suppressed by 15% after 1.44 × 1010 switching cycles.  相似文献   

2.
The A-site non-stoichiometry of [(Na0.7K0.2Li0.1)0.45Bi0.55]TiO3 + x (NKLBT) films were epitaxially deposited on LaNiO3(100)/Si substrates using metal organic decomposition. The structural evolution of NKLBT films annealed at different temperatures is studied and a single perovskite phase can be found at the low temperature of 600 °C. Ferroelectric hysteresis measurement shows a higher remanent polarization value of 15.6 μC/cm2 with a lower coercive field of 89 kV/cm at 450 kV/cm due to the lower concentration of oxygen vacancies by the donor doping effect. The frequency dependence of the capacitance-voltage behavior and the correlation between the capacitance-voltage and polarization-electric field are analyzed. The dielectric constant and dissipation factor are measured to be 690 and 0.04, respectively, at a frequency of 1 MHz.  相似文献   

3.
A series of multiferroic (1−x)BiFeO3x(Bi0.5Na0.5)TiO3 (BF-BNT) (x = 0 − 0.6) solid solution ceramics were prepared by a sol-gel method. The XRD results show that increasing BNT content induce a gradual phase transformation from rhombohedral to pseudocubic structure near x = 0.4. Compared with pure BiFeO3, superior multiferroic properties are obtained for x = 0.3 with remnant polarization Pr = 1.49 μC/cm2 and saturated magnetization Ms = 0.51 emu/g. Importantly, the paramagnetic (PM) to ferromagnetic (FM) transition is observed for the solutions, and the Curie temperature (TC) can be tuned by varying the content of BNT. This observed FM ordering is discussed in terms of the possible existence of the long-range superexchange interaction of Fe3+-O-Ti-O-Fe3+ in the chemically ordered regions.  相似文献   

4.
Ba0.68Sr0.32TiO3 ceramics of perovskite structure are prepared by solid state reaction method with addition of x mol% Sm2O3, and their dielectric properties are investigated. It is found that, integrating with the lattice parameters and tolerance factor t, there is an alternation of substitution preference of Sm3+ for the host cations in perovskite lattice. Owing to the replacement of Sm3+ ions for Ba2+ ions in the A site, Tc rises with the increase of Sm2O3 doping when the doping content is below 0.1 mol%; meanwhile, when the content is more than 0.1 mol%, Sm3+ ions tend to occupy the B-site, causing a drop of Tc. Owing to the modifications of Sm3+ doping, dielectric constant, dissipation factor and temperature stability of dissipation factor are influenced remarkably, making it a superior candidate for environment-friendly applications. Moreover, the creation of oxygen vacancies controls the dielectric constant when the addition is above 0.1 mol%, so the dielectric constant decreases with increasing of samarium.  相似文献   

5.
The present work reports the effects caused by barium on phase formation, morphology and sintering of lead magnesium niobate-lead titanate (PMN-50PT). Ab initio study of 0.5Pb(Mg1/3Nb2/3)O3-0.5(BaxPb(1−x)TiO3) ceramic powders, with x = 0, 0.20, and 0.40 was proposed, considering that the partial substitution of lead by barium can reestablish the equilibrium of monoclinic-tetragonal phases in the system. It was verified that even for 40 mol% of barium, it was possible to obtain pyrochlore-free PMN-PT powders. The increase of the lattice parameters of PMN-PT doped-powders confirmed dopant incorporation into the perovskite phase. The presence of barium improved the reactivity of the powders, with an average particle size of 120 nm for 40 mol% of barium against 167 nm for the pure sample. Although high barium content (40 mol%) was deleterious for a dense ceramic, contents up to 20 mol% allowed 95% density when sintered at 1100 °C for 4 h.  相似文献   

6.
Lead-free piezoelectric (Bi0.95Na0.75K0.20−xLix)0.5Ba0.05TiO3 ceramics have been prepared by conventional process for different lithium substitutions. The SEM images show that the ceramics are well sintered at 1428 K. Dielectric and ferroelectric measurements have been performed. With the increasing of lithium substitution, the Curie temperature of the (Bi0.95Na0.75K0.20−xLix)0.5Ba0.05TiO3 ceramics shifts from 570 K to 620 K, but the maximum value of the dielectric constant decreases from 6700 to 4700 correspondingly. A relatively larger remanent polarization of 36.8 μC/cm2 has been found in the x = 0.05 sample. The coercive field decreases as the lithium substitution amount increases. An optimized d33 = 194 × 10− 12 C/N and a relative dielectric constant εr = 1510 have been obtained in (Bi0.95Na0.75K0.15Li0.05)0.5Ba0.05TiO3.  相似文献   

7.
T. Yu  K.W. Kwok  H.L.W. Chan 《Materials Letters》2007,61(10):2117-2120
(1 − x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 [BNT-BKT-100x] thin films have been successfully deposited on Pt/Ti/SiO2/Si substrates by a sol-gel process together with rapid thermal annealing. A morphotropic phase boundary (MPB) between Bi0.5Na0.5TiO3 and Bi0.5K0.5TiO3 was determined around x ∼ 0.15. Near the MPB, the film exhibits the largest grain size, the highest ε value (360) and the largest Pr value (13.8 μC/cm2). The BNT-BKT thin film system is expected to be a new and promising candidate for lead-free piezoelectric applications.  相似文献   

8.
Jin Won Kim 《Thin solid films》2010,518(22):6514-6517
V-doped K0.5Bi4.5Ti4O15 (K0.5Bi4.5  x/3Ti4  xVxO15, KBTiV-x, x = 0.00, 0.01, 0.03, and 0.05) thin films were prepared on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. The thin films were annealed by using a rapid thermal annealing process at 750 °C for 3 min in an oxygen atmosphere. Among them, KBTiV-0.03 thin film exhibited the most outstanding electrical properties. The value of remnant polarization (2Pr) was 75 μC/cm2 at an applied electric field of 366 kV/cm. The leakage current density of the thin film capacitor was 5.01 × 108 at 100 kV/cm, which is approximately one order of magnitude lower than that of pure K0.5Bi4.5Ti4O15 thin film capacitor. We found that V doping is an effective method for improving the ferroelectric properties of K0.5Bi4.5Ti4O15 thin film.  相似文献   

9.
Na0.5K0.5NbO3 (NKN) and 10 mol% (Na,K) excess Na0.5K0.5NbO3 (NKN10) thin films on Pt/Ti/SiO2/Si substrate were prepared by chemical solution deposition. Crystallization of NKN10 thin films was confirmed by X-ray diffraction. The (Na,K) excess Na0.5K0.5NbO3 thin film shows a ferroelectric P-E hysteresis loop. Dielectric properties and impedance spectroscopy of thin films were investigated in the frequency range from 0.1 Hz to 100 kHz and the temperature range of 25 ~ 500 °C. By analyzing the complex impedance relaxation with Cole-Cole plots, we found impedance relaxations for the thin film. The contribution of electrical conduction is discussed in relation to grain, grain boundary, and interface effects.  相似文献   

10.
Na0.5Bi0.5Cu3Ti4O12 (NBCTO) ceramics were prepared by conventional solid-state reaction method. The phase structure, microstructure and dielectric properties of NBCTO ceramics sintered at various temperatures with different soaking time were investigated. Pure NBCTO phase could be obtained with increasing the temperature and prolonging the soaking time. High dielectric permittivity (13,495) and low dielectric loss (0.031) could be obtained when the ceramics were sintered at 1000 °C for 7.5 h. The ceramics sintered at 1000 °C for 7.5 h also showed good temperature stability (−4.00 to −0.69%) over a large temperature range from −50 to 150 °C. Complex impedances results revealed that the grain was semiconducting and the grain boundaries was insulating. The grain resistance (Rg) was 12.10 Ω cm and the grain boundary resistance (Rgb) was 2.009 × 105 Ω cm when the ceramics were sintered at 1000 °C for 7.5 h.  相似文献   

11.
(K0.5Bi0.5)TiO3-BiScO3-PbTiO3 ceramics were synthesized by conventional solid-state method. A morphotropic phase boundary (MPB) was confirmed with the aid of structural analysis. Two dielectric anomalous peaks were observed, the one around dielectric maximum temperature (Tm) due to phase transformation from ferroelectric to paraelectric while the second one could be ascribed to space charges. Furthermore, the existence of space charges also resulted in the independence of Tm with frequency at low lead composition. A new high temperature piezoelectric ceramic, 0.30(K0.5Bi0.5)TiO3-0.30BiScO3-0.40PbTiO3 close to MPB exhibited excellent electrical properties with Tm of 384 °C, d33 of 247 pC/N, kp of 38.9%, Pr of 19.41 μC/cm2, and Ec of 2.25 kV/mm, indicative of a candidate for high temperature application.  相似文献   

12.
xMgWO4-(1 − x) Ba0.5Sr0.5TiO3 (x = 0.0, 5.0, 15.0, 25.0 and 35.0 wt%) composite ceramics were prepared via solid state reaction processing. Their structural and dielectric properties were systematically characterized. A significant increase in grain size was observed with increasing MgWO4 content, which was accompanied by obvious variations in dielectric properties of the composite ceramics. It is found that the permittivity peaks of the samples gradually shifted to low temperatures with increasing MgWO4 content. At the same time, tunabilities of the composite ceramics decreased, but their Q values increased. The sample with 35 wt% MgWO4 possesses a high tunability of 16.8% (∼10 kHz), a low permittivity of 65 and an appropriate Q value of 309 (∼4.303 GHz), which meet the requirements of high power and impedance matching, thus making it a promising candidate for applications as electrically tunable microwave devices.  相似文献   

13.
Trilayered Bi3.25La0.75Ti3O12 (25 nm)/(Na0.5Bi0.5)0.94Ba0.06TiO3 (300 nm)/Bi3.25La0.75Ti3O12 (25 nm) and Pb(Zr0.4Ti0.6)O3 (25 nm)/(Na0.5Bi0.5)0.94Ba0.06TiO3 (300 nm)/Pb(Zr0.4Ti0.6)O3 (25 nm) thin films without undesirable phases have been deposited on Pt/Ti/SiO2/Si substrates. It was found that the Bi3.25La0.75Ti3O12 and Pb(Zr0.4Ti0.6)O3 layers are very effective to inhibit the charge transport in the trilayered films. Much better insulating properties than those of (Na0.5Bi0.5)0.94Ba0.06TiO3 films have been achieved in the trilayered films. The trilayered films show good dielectric, ferroelectric and pyroelectric properties. Remnant polarizations 2Pr of 16 µC/cm2 and 34 µC/cm2, pyroelectric coefficients of 4.8 × 10 4 C m− 2 K− 1 and 7.0 × 10− 4 C m− 2 K− 1 have been obtained for the Bi3.25La0.75Ti3O12/(Na0.5Bi0.5)0.94Ba0.06TiO3/Bi3.25La0.75Ti3O12 and Pb(Zr0.4Ti0.6)O3/(Na0.5Bi0.5)0.94Ba0.06TiO3/Pb(Zr0.4Ti0.6)O3 thin films, respectively. The trilayered films are promising candidates for sensor and actuator applications.  相似文献   

14.
Lead-free piezoelectric thin films of NaNbO3-BaTiO3 were fabricated on Pt/TiOx/SiO2/Si substrates by chemical solution deposition. Perovskite NaNbO3-BaTiO3 single-phase thin films with improved leakage-current and ferroelectric properties were prepared at 650 °C by doping with a small amount of Mn. The 1.0 and 3.0 mol% Mn-doped 0.95NaNbO3-0.05BaTiO3 thin films showed slim ferroelectric P-E hysteresis and field-induced strain loops at room temperature. The 1.0 and 3.0 mol% Mn-doped 0.95NaNbO3-0.05BaTiO3 films showed remanent polarization values of 6.3 and 6.2 μC/cm2, and coercive field of 41 and 55 kV/cm, respectively. From the slope of the field-induced strain loop, the effective piezoelectric coefficient (d33) was found to be 40-60 pm/V.  相似文献   

15.
(Na0.82K0.18)0.5Bi0.5TiO3 nanofibers were synthesized by sol-gel process and electrospinning. Scanning electron microscopy was used to verify that the diameters and lengths are in the range of 150-600 nm and several hundreds of micrometer. Perovskite structure and grain size (20-70 nm) were verified by X-ray diffraction and transmission electron microscopy. The high effective piezoelectric coefficient d33 (96 pm/V) was measured by scanning force microscopy. It may be attributed to easily tilting the polar vector of domain for an electric field and the increase in the number of possible spontaneous polarization direction near the rhombohedral-tetragonal morphotropic phase boundary. The research shows that there are potentional applications for (Na0.82K0.18)0.5Bi0.5TiO3 nanofiber in nanoscale lead-free piezoelectric devices.  相似文献   

16.
Ti-modified thin films of multiferroic 0.72Bi(Fe1  xTix)O3-0.28PbTiO3 (BFPT, = 0 and 0.02) solid solution were prepared by pulsed laser deposition. The BFPT (= 0 and 0.02) films possess a tetragonal structure with highly preferential (001) orientation. The effects of the ionic substitution on the properties of BFPT (= 0 and 0.02) films have been investigated. The leakage current of the BFPT (= 0.02) thin film is significantly reduced, and the dielectric and ferroelectric properties greatly improved by the aliovalent ionic substitution of Ti4+ for Fe3+. The BFPT (= 0.02) thin film exhibits a reasonably high remnant polarization Pr with 2Pr up to 90 μC/cm2 at 312 kV/cm and a switchable polarization up to 92 μC/cm2 at 417 kV/cm.  相似文献   

17.
The binary lead-free piezoelectric ceramics with the composition of (1 − x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 were synthesized by conventional mixed-oxide method. The phase structure transformed from rhombohedral to tetragonal phase in the range of 0.16 ≤ x ≤ 0.20. The grain sizes varied with increasing the Bi0.5K0.5TiO3 content. Electrical properties of ceramics are significantly influenced by the Bi0.5K0.5TiO3 content. Two phase transitions at Tt (the temperature at which the phase transition from rhombohedral to tetragonal occurs) and Tc (the Curie temperature) were observed in all the ceramics. Adding Bi0.5K0.5TiO3 content caused the variations of Tt and Tc. A diffuse character was proved by the linear fitting of the modified Curie-Weiss law. Besides, the ceramics with homogeneous microstructure and excellent electrical properties were obtained at x = 0.18 and sintered at 1170 °C. The piezoelectric constant d33, the electromechanical coupling factor Kp and the dielectric constant ?r reached 144 pC/N, 0.29 and 893, respectively. The dissipation factor tan δ was 0.037.  相似文献   

18.
Bi3.25Eu0.75Ti3O12 (BET) thin films were deposited on Pt/Ti/SiO2/Si(111) substrates by a metal-organic decomposition method. The effects of annealing temperatures 600-800 °C on microstructure, ferroelectric, dielectric and piezoelectric properties of BET thin films were studied in detail. The spontaneous polarization (87.4 × 10− 6 C/cm2 under 300 kV/cm), remnant polarization (65.7 × 10− 6 C/cm2 under 300 kV/cm), the dielectric constant (992.9 at 100 kHz) and the effective piezoelectric coefficient d33 (67.3 pm/V under 260 kV/cm) of BET thin film annealed at 700 °C are better than those of the others. The mechanisms concerning the dependence of the enhancement d33 are discussed according to the phenomenological equation, and the improved piezoelectric performance could make the BET thin film a promising candidate for piezoelectric thin film devices.  相似文献   

19.
The (Na0.85K0.15)0.5Bi0.5TiO3 (BNKT) powders were synthesized by solid-state method, sol-gel method and stearic acid method. Microstructure, piezoelectric and dielectric properties of the ceramics were investigated. Attempts had been made to understand the reaction processes by using thermo gravimetric (TG) and differential scanning calorimetry (DSC). The BNKT powders have a perovskite structure with average crystallite sizes of 168 nm, 85 nm and 79 nm, corresponding to the solid-state method, the sol-gel method and the stearic acid method, respectively. The ceramics derived from the powder synthesized by sol-gel method presents the most homogeneous microstructure and largest grain size (5-7 μm). The effects of average crystallite size on microstructures and electric properties of the BNKT ceramics were investigated. Both the piezoelectric properties and dielectric properties were enhanced with the increase of grain size.  相似文献   

20.
Lead-free ferroelectric Bi-doped K0.5Na0.5NbO3 (KNN) and undoped KNN films were prepared by pulsed laser deposition. Bi-doped film exhibited good crystallization and improved ferroelectric properties. The dielectric constant and loss tangent were 1038 and 0.138 at 1 kHz, respectively. The remanent polarization (Pr = 28 μC/cm2) of Bi-doped film was about four times larger than that of the undoped film, which attributed to the decrease of oxygen vacancies concentration. The coercive field (Ec = 24 kV/cm) of Bi-doped films was half of the undoped film. The conduction mechanisms of Bi-doped film determined to be Space-Charge-Limited-Current and Poole–Frenkle emission at low and high electric field, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号