首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用于制备聚羧酸超塑化剂的聚醚单体酯化工艺研究   总被引:1,自引:0,他引:1  
本文对制备聚羧酸系减水剂的重要中间体——甲基丙烯酸聚乙二醇单甲醚酯的合成工艺进行了研究,考察了反应时间、催化剂对甲苯磺酸的用量、阻聚剂对苯二酚的用量、反应温度及甲基丙烯酸(MAA)与聚乙二醇单甲醚(MPEG)的用量比对酯化率的影响。结果表明:最佳反应条件为反应时间为8h,催化剂与MPEG的摩尔比为0.1,阻聚剂与MPEG的摩尔比为0.04,反应温度为130℃,酸醇比为1.3,在此条件下,酯化率达到了98%以上。  相似文献   

2.
以丙烯酸和甲氧基聚乙二醇为主要原料,采用直接酯化法合成了聚羧酸系减水剂大分子单体(甲氧基聚乙二醇丙烯酸酯)。探讨了丙烯酸与甲氧基聚乙二醇摩尔比、催化剂和阻聚剂的用量、反应温度及反应时间对酯化反应的影响。得出最佳合成条件:丙烯酸与甲氧基聚乙二醇摩尔比为1.5,对甲苯磺酸的用量为甲氧基聚乙二醇质量分数为3%,对苯二酚的用量为丙烯酸质量分数的1.5%,甲苯用量为反应物总量的30%。反应温度为130℃,反应时间为6h,酯化率可达96.8%。  相似文献   

3.
以聚乙二醇单甲醚和甲基丙烯酸、丙烯酸,在催化剂、阻聚剂存在的情况下,采用熔融酯化法制备聚羧酸类减水剂中间大分子单体.用核磁共振图谱和红外光谱对产物进行了表征.研究了聚乙二醇单甲醚和甲基丙烯酸及丙烯酸的摩尔比、不同催化剂及阻聚剂用量对反应的影响.在最佳合成条件下,可得到酯化率达95%,双键剩余率为97%的大单体.  相似文献   

4.
利用微波技术清洁、高效、靶向等特点,分别采用微波合成法和常规油浴法,以聚乙二醇单甲醚(MPEG),甲基丙烯酸(MAA)等原材料制备甲氧基聚乙二醇甲基丙烯酸酯(MPEGMAA),并进一步聚合成酯类聚羧酸减水剂进行性能对比.分别研究了酸醇比、催化剂用量、阻聚剂用量、反应时间、酯化温度以及微波功率对酯化大单体酯化率的影响规律,并基于微波合成法得出最优配比与工艺方案:n(MAA)∶n(MPEG)=5.0∶1.0,催化剂用量为MPEG质量的4.5%,阻聚剂用量为MAA质量的0.28%,酯化温度为120℃,酯化时间为100min,微波功率为1 000W.微波合成法的酯化率为93.47%,是常规油浴法的1.14倍,反应速率为常规油浴法的4.8倍.通过水泥净浆流动度试验、流变学研究以及红外光谱分析得出,微波合成法更有利于酯化大单体酯键的形成,且合成的酯类聚羧酸减水剂分散性及分散保持性更优.  相似文献   

5.
聚羧酸系减水剂大单体MPEGMA的制备   总被引:8,自引:0,他引:8  
以聚乙二醇单甲醚(MPEG)和甲基丙烯酸(MAA)为主要原料,通过酯化反应制备聚羧酸系减水剂大单体聚乙二醇单甲醚甲基丙烯酸酯(MPEGMA).以酯化率作为衡量指标,研究了酸醇摩尔比(n(MAA)/n(MPEG))、催化剂用量、阻聚剂用量、酯化温度及酯化时间对酯化反应的影响.结果表明:最佳酯化条件包括:n(MAA)/n(MPEG)为2.5,催化剂用量为MPEG与MAA质量和的2%,阻聚剂用量为MAA质量的2%,酯化温度为120℃,酯化时间为7 h.以最佳酯化工艺制得的大单体为原料制备的聚羧酸系减水剂,具有良好的分散性和保塑性,掺该减水剂0.15%(质量分数)的水泥净浆的初始流动度达303 mm,1 h后其流动度为297 mm.  相似文献   

6.
以马来酸酐(MA)与聚乙二醇(PEG)酯化生成马来酸聚乙二醇酯大分子单体(PEM),再与甲基丙烯磺酸钠(MAS)和丙烯酸(AA)在过硫酸铵的引发下共聚得到聚羧酸系减水剂.研究了MA与PEG的摩尔比,催化剂对甲苯磺酸(SMS)用量,反应温度、反应时间对酯化率的影响.利用正交试验优化了共聚反应原料摩尔比,引发剂用量,反应温度、反应时间等工艺参数.结果表明,增大MA与PEG摩尔比,提高催化剂用量,提高反应温度或延长反应时间都可以提高酯化率.最佳反应条件为:n(PEM)∶n(AA)∶n(MAS)=1∶3∶1,n (MA)∶n (PEG) =3∶1,催化剂对甲苯磺酸用量为马来酸酐的3%,引发剂过硫酸铵用量为甲基丙烯磺酸钠、马来酸酐聚乙二醇酯和丙烯酸总质量的3%,反应温度为85℃,反应时间为5h.  相似文献   

7.
在无溶剂存在下,以对甲苯磺酸为催化剂,4A分子筛作脱水剂,以马来酸酐(MAH)和聚乙二醇单甲醚(MPEG)为原料合成了马来酸双聚乙二醇单甲醚酯(DMPEGMA)。考察了单体摩尔比、催化剂用量、反应温度及反应时间等条件对酯化率的影响。试验结果表明,当n(MPEG)∶n(MAH)=2.1∶1.0,催化剂用量为聚乙二醇单甲醚和马来酸酐总质量的5%,反应温度为130℃,反应时间为8h时,酯化率可达到97.2%。以这种大单体合成的聚羧酸系减水剂具有良好的分散性和保塑性,当其掺量为0.3%,水灰比为0.29时,水泥净浆初始流动度达300 mm。  相似文献   

8.
曾小君  姚莉  吴瑞祥  刘琰  夏方刚 《混凝土》2011,(4):89-90,94
以马来酸酐(MAH)和聚乙二醇单甲醚(MPEG)为原料.以对甲苯磺酸为催化剂,采用熔融酯化法合成了马来酸单聚乙二醇单甲醚酯(MPEGMA).利用红外光谱分析了温度对MPEG与催化剂混合物稳定性的影响规律,考察了单体摩尔比、催化剂用量以及反应时间等条件对酯化率的影响,并通过红外光谱分析表征了酯化产物的结构.试验结果表明:...  相似文献   

9.
熔融酯化法制备聚羧酸类高效减水剂中间大分子单体   总被引:3,自引:1,他引:2  
以聚乙二醇单甲醚和马来酸酐为原材料,采用自制的固体催化剂,用熔融酯化法制备聚羧酸类减水剂中间大分子单体(PMAn).用核磁共振谱和红外光谱对产物进行了表征.研究了聚乙二醇单甲醚和马来酸酐的摩尔比、催化剂和阻聚剂的质量分数、反应温度及反应时间、聚乙二醇单甲醚的分子量对反应的影响.在最佳合成条件下,酯化率可达95%,双键剩余率为97%.随着聚乙二醇单甲醚的分子质量的增大,可通过延长反应时间来增大酯化率.  相似文献   

10.
以聚乙二醇单甲醚(MPEG)与甲基丙烯酸(MAA)为原料,以对甲苯磺酸为催化剂,在负压条件下通过酯化反应制备聚乙二醇单甲醚甲基丙烯酸酯(MPEGMA),产物作为合成聚羧酸减水剂的中间体.对酯化率测定方法进行了探讨,利用正交设计找出了影响产物酯化率的显著因素,探讨了MAA与MPEG的摩尔比、反应温度、反应时间、催化剂用量等因素对产物酯化率的影响.结果表明,最佳酯化工艺条件为:n(MPEG)∶n(MAA)=1.0∶2.2、催化剂用量4.17%、反应温度123℃、反应时间5.5 h,所得产物酯化率达到95.12%,且产物酯化率越高所合成的减水剂分散性越好.  相似文献   

11.
以马来酸酐(MA)和聚乙二醇(PEG)为主要原料,合成马来酸聚乙二醇单酯,将酯化物作为单体与2-丙烯酰胺-2-甲基丙磺酸(AMPS)、甲基丙烯酸共聚制备得到马来酸酐系减水剂,对酯化物和共聚物进行红外光谱表征。通过正交试验讨论了酯化反应的工艺条件,并对酯化反应速率的规律进行了探讨。以GPC表征共聚物减水剂的分子量及分布;通过SEM观察了添加减水剂的水泥石早期微观结构。结果表明,以三乙胺为催化剂,当n(MA)∶n(PEG1000)=2∶1,催化剂用量为5%,85℃下反应3 h时,酯化率为97.26%;数据分析表明,该酯化反应为准二级反应;减水剂平均分子量Mn为12 562,分散系数Mw/Mn为2.1361;SEM分析结果显示,添加减水剂使水泥石大孔减少,生成更多较小的孔,结晶生长更密实。  相似文献   

12.
《Planning》2014,(19)
以丙烯酸和聚乙二醇为原料,在对甲苯磺酸的催化下、氢醌为阻聚剂,利用二元醇与羧酸的酯化反应制得纯度较高的交联剂(聚乙二醇二丙烯酸酯),产率为74.37%。之后利用自由基引发的链式聚合反应制得丙烯酸-聚乙二醇二丙烯酸酯共聚物(即超强吸水剂)。经吸水试验测得所合成超强吸水剂对自来水的吸水倍率为85.19。  相似文献   

13.
讨论了新型混凝土聚羧酸类高性能减水剂的中间大分子单体--聚乙二醇甲基丙烯酸酯的合成.通过对不同分子量的聚乙二醇与甲基丙烯酸在不同摩尔比、不同反应温度、不同阻聚剂掺量、不同催化剂掺量、不同反应时间等试验条件下的研究,确定了聚乙二醇分子量为1 000、酸醇摩尔比为1.2:1、反应温度为100 ℃、阻聚剂掺量为0.8%、催化剂掺量为3%、反应时间为6 h的甲基丙烯酸全连续滴加的最佳酯化工艺,酯化率为95%以上.此外,通过傅里叶变换红外光谱对大分子单体进行了表征,结果表明已得到预期结构的聚乙二醇单甲基丙烯酸酯大分子单体.  相似文献   

14.
新型聚羧酸类混凝土减水剂中间大分子单体合成研究   总被引:12,自引:1,他引:12  
讨论聚羧酸类减水剂的中间大分子单体——聚乙二醇单丙烯酸酯(PEA)的合成:通过对聚乙二醇与丙烯酸在不同摩尔比、催化剂、反应温度及反应时间等试验条件的研究,确定了醇酸摩尔比为1:1.2、反应温度为85~90℃和丙烯酸全连续滴加的酯化工艺:采用自行合成的CHJ-1和CHJ-2催化剂,在用量为1%时.制得酯化率在95%左右的理想酯化产物PEA。  相似文献   

15.
马来酸型聚羧酸减水剂的合成研究   总被引:8,自引:1,他引:7  
以马来酸酐、聚乙二醇为原料.通过酯化反应.合成出聚乙二醇单乙醚马来酸单酯活性大单体.确定出最俸反应条件为:原料摩尔配合比为1:1.5,非氧化性对甲基苯磺酸催化剂的用量为0.5%,温度为90℃.反应时间为6 h,合成出活性大单体的酯化率达到92.2%.试验结果表明:采用聚乙二醇单乙醚马来酸酐单酯活性大单体、对乙烯基苯磺酸钠和甲基丙烯酸为原料,最佳摩尔配合比为1.0:1.5:4.0时,制备出高效马来酸型聚羧酸减水剂.当高效减水剂的掺量为0.5%.产物的减水性能及净浆流动度保持性能良好,水泥初始净浆流动度达到295 mm、60 min净浆流动度维持在260 mm;可使水泥的用水量减少28%.  相似文献   

16.
采用丙烯酸羟乙酯与酒石酸进行酯化,将酯化产物(M)与丙烯酸(AA)、甲基烯丙基聚氧乙烯醚(TPEG)、2-丙烯酰胺-2-甲基丙烷磺酸(AMPS)在引发剂过硫酸铵作用下进行共聚,合成了一种缓释型聚羧酸系减水剂。探讨了单体摩尔比、催化剂用量、酯化温度、带水剂等因素对酯化反应的影响,考察了酯化产物M对丙烯酸AA替代量对水泥净浆流动性的影响。结果表明:酯化反应的最佳条件为:n(酒石酸)∶n(丙烯酸羟乙酯)=1∶5,酯化温度85℃,催化剂对甲苯磺酸掺量3%,带水剂环己烷用量为反应物总质量的40%;将合成的酯化产物M部分替代AA进行减水剂的合成,最佳单体比例为:n(AA)∶n(TPEG)∶n(AMPS)∶n(酯化产物M)=1.25∶1.00∶0.27∶2.00;当合成的聚羧酸减水剂掺量为0.3%时,水泥净浆初始流动度为245.0 mm、1 h流动度为207.5 mm、2 h流动度为225.0 mm,制备的聚羧酸减水剂具有良好的缓释功能。  相似文献   

17.
通过丙烯酸与端羟基壬基酚聚氧乙烯基醚的酯化反应,制得含有双键和聚氧乙烯长链的大分子单体,并将其作为聚羧酸盐高效减水剂的单体.研究了大分子单体制备中酸醇摩尔比、催化剂用量、反应温度、反应时间等对羧基转化率的影响,结果表明:酸醇摩尔比1.5、催化剂用量1.2%、反应温度130°C,酯化反应时间8h是制备丙烯酸聚氧乙烯酯大分子单体的最佳工艺条件.通过傅立叶变换红外光谱对大分子单体进行了表征,结果表明已得到预期结构的丙烯酸聚氧乙烯酯大分子单体.  相似文献   

18.
在通氮气条件下,以氢氧化钠为催化剂、对苯二酚为阻聚剂,以甲氧基聚乙二醇单甲醚(MPEG-1200和MPEG-2000)和甲基丙烯酸甲酯(MMA)为原料合成甲氧基聚乙二醇甲基丙烯酸酯(MPEGMA),考察了影响酯交换反应的因素。实验结果表明,氢氧化钠用于催化合成MPEGMA时,催化活性高、反应条件温和、操作方法简便;当m(MPEG-1200)∶m(MPEG-2200)=1∶3,n(MMA)∶n(MPEG)=3∶1,对苯二酚和催化剂用量分别为反应物总质量的0.2%和2.0%,通氮气条件下,反应温度90℃,反应时间4 h时,酯交换率达94.1%;氢氧化钠重复使用3次后,酯交换率仅下降1.4个百分点。以这种大单体合成的聚羧酸系减水剂PC-2与我公司现售产品PC-1相比具有较好的分散性和保塑性,当PC-2掺量为0.2%,水灰比为0.29时,水泥净浆初始流动度达280 mm,2 h水泥净浆流动度仍保持在273 mm。  相似文献   

19.
以聚乙二醇单甲醚(MPEG)和马来酸酐(MA)为原料,经酯化制得马来酸单聚乙二醇单甲醚酯(MPEGMA)和马来酸酐的混合物.以马来酸单聚乙二醇单甲醚酯(MPEGMA)、马来酸酐(MA)和甲基丙烯磺酸钠(SMAS)为原料通过共聚反应制得MPEGMA-MA-SMAS三元共聚物高效减水剂.讨论了酯化反应和共聚反应中影响合成减水剂分散性的因素.试验结果表明:当n(MPEG):n(MA):n(SMAS)=1:4:0.9,催化剂用量为聚乙二醇单甲醚和马来酸酐总质量的5%.酯化反应温度为105~115℃,酯化反应时间为2 h,聚合反应温度为85℃,聚合反应时间为5 h,引发剂用量为单体总质量的10%时,合成减水剂的综合性能良好.当其掺量为0.33%时,具有较好的分散性,水泥净浆初始流动度达284mm.  相似文献   

20.
在催化剂、阻聚剂、带水剂存在的备件下,由甲基丙稀酸与聚乙二醇(200)直接酯化合成甲基丙稀酸聚乙二醇(200)酯,并对酸醇比、阻聚刺、催化剂、带水剂等影响因素进行了比较。研究结果表明当阻聚剂选用对苯二酚(0.9%-1,3%)或者对羟基苯甲醚(0.7%-1.3%),酸醇比为2.15~2.20、催化刺选用对甲苯磺酸(5%~6%)、带水剂选用甲苯(50%)时,聚乙二醇二甲基丙烯酸酯的产率可以达到97.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号