首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《稀土》2016,(3)
采用溶胶凝胶-燃烧法合成Sr_(2-x-y)Ca_xMg_yAl_2SiO_7∶Eu~(2+)稀土长余辉发光材料,通过TG-DTA、XRD、SEM和荧光光谱分析等方法,研究了材料的结构、颗粒形貌和发光性能,并对Ca~(2+)、Mg~(2+)、Eu~(2+)不同掺杂浓度下的发光性能进行了对比研究。结果表明,适量掺杂Ca~(2+)、Mg~(2+)、Eu~(2+)后,基质的晶格结构并未发生变化,为Sr_2Al_2SiO_7晶粒,粒径在1 um~4 um,其激发光谱是位于峰值340 nm~360 nm的宽带谱,发射光谱峰值位于460 nm~480 nm。掺杂Ca~(2+)、Mg~(2+)后发光强度得到提高,镁元素的掺杂可引起发射波长向长波方向移动,而钙元素掺杂可引起发光强度的增大。影响材料发光性能的主要因素是钙,其次是铕,在实验条件下当Ca~(2+)的掺杂量为0.2,Mg~(2+)的掺杂量为0.1,Eu~(2+)的掺杂量为0.04时发光强度为最大,其发射光谱峰值位于469 nm处,最大发射光谱强度达到了8500。  相似文献   

2.
《稀土》2016,(3)
采用高温固相反应合成了SrAl_2O_(4-y)N_y∶Eu~(2+),Dy~(3+)系列长余辉荧光粉,并研究了SrAl_2O_(3.75)N_(0.25)∶Eu~(2+),Dy~(3+)体系的晶体结构、光谱特性、余辉衰减曲线及热释发光曲线。X射线衍射分析结果表明,SrAl_2O_(3.75)N_(0.25)∶Eu~(2+)荧光材料属六方晶系,P6322空间群,晶胞参数a=b=5.14,c=8.462,γ=120°。荧光光谱测试结果表明,SrAl_2O_(3.75)N_(0.25)∶Eu~(2+)的激发光谱和发射光谱均为宽带谱,激发光谱位于283 nm~450 nm,发射光谱的峰值位于487 nm,属于Eu~(2+)的4f65d1→4f7跃迁发射。Eu~(2+)的掺杂量并不改变SrAl_2O_(3.75)N_(0.25)∶Eu~(2+)发射光谱的形状和峰值位置,但对相对发光强度有较大影响,Eu~(2+)的摩尔浓度为2%时相对发光强度最高。余辉衰减曲线表明,Sr_(0.97)Al_2O_(3.75)N_(0.25)∶Eu_(0.02),Dy_(0.01)的余辉衰减符合指数衰减规律,由初始的快衰减和之后的慢衰减两个过程组成。通过热释发光曲线对荧光材料中的陷阱能级进行计算,得出Sr_(0.97)Al_2O_(3.75)N_(0.25)∶Eu_(0.02),Dy_(0.01)的能级陷阱为0.42 V,掺Dy~(3+)有利于提高该荧光材料的初始发光亮度和余辉时间。  相似文献   

3.
通过高温固相法制备了Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)长余辉发光材料。采用XRD、SEM、激发光谱、发射光谱和余辉衰减曲线对Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)长余辉发光材料的微观结构以及光学性能进行了表征,研究结果表明Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)长余辉发光材料的晶体结构和显微结构均未发生明显变化。Yb~(3+)的引入使得Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+)显示出更优良的荧光性能和余辉性能,不同Yb~(3+)掺量对长余辉发光材料的陷阱深度和电子传输速率有显著影响。实验表明,当Yb~(3+)掺杂量为0.03时,Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)的荧光光谱相对强度最强,且表现出最佳的余辉衰减性能。  相似文献   

4.
《稀土》2017,(2)
本文采用溶胶-凝胶法制备了Sr_(2-x-y)Ca_yAl_2SiO_7:xEu~(2+)(y=0,0.1,0.2,0.3,x=0.04)荧光粉,系统地研究了Ca~(2+)对Sr_2Al_2SiO_7:Eu~(2+)长余辉材料的微观结构和发光性能的影响,以及产生这些影响的机理。通过XRD与SEM分析,发现荧光粉为Sr_2Al_2SiO_7结构且为四方晶系,粒度在70 nm左右。对荧光粉的激发和发射光谱进行了测试,结果表明掺杂Ca~(2+)会使发射峰位置微弱蓝移并当浓度超过0.2%(摩尔分数,下同)后,出现浓度猝灭现象。采用三指数函数模型对余辉衰减曲线进行拟合,发现掺杂Ca~(2+)浓度为0.2%时光子的最大寿命为109 s大于未掺杂Ca~(2+)时的106 s。通过热释光谱测量,估算了其陷阱的深度和密度。分析表明,掺杂Ca~(2+)浓度为0.2%时荧光粉具有较佳的陷阱深度(0.77 eV)与陷阱密度(3.86×10~4(cm~3)~(-1)),表现出优良的余辉性能。  相似文献   

5.
《稀土》2021,(1)
以Gd_2O_3、Eu_2O_3和NH_4HSO_4为原料,采用微波辐射法合成了Gd_2O_2SO_4∶Eu~(3+)发光材料。并用X射线衍射仪、扫描电镜、荧光光谱仪对所得发光材料的物相、形貌和发光性能进行了表征。结果表明,微波辐射30 min可以合成纯相Gd_2O_2SO_4∶Eu~(3+)发光材料,晶体结构为正交晶系,与Gd_2O_2SO_4结构相同;其形貌不规则,存在团聚现象;Gd_2O_2SO_4∶Eu~(3+)发光材料呈红光发射,发射光谱由一系列铕离子的~5D_0→~7F_j(j=0,1,2,3,4)能级跃迁的尖峰组成,激发光谱主要由处于200 nm~350 nm的宽激发带和位于397 nm和466 nm的窄激发带组成。  相似文献   

6.
《稀土》2017,(2)
通过高温固相法合成了红色荧光粉系列Ba_(1-x)Al_2Si_2O_8:Eu_x~(3+),Li_(0.03)~+,并系统地研究了该系列荧光粉的晶体结构和发光性质的变化。合成的试样均为BaAl_2Si_2O_8晶体,均单斜晶系,空间群为C2/m(12)。Eu~(3+)取代Ba~(2+)格位进入基质BaAl_2Si_2O_8晶体,造成了基质晶胞参数a,b,c和晶胞体积V相应地减小,只引起了基质晶体结构轻微的畸变。试样的激发光谱位于220 nm~550 nm,由一个宽带激发谱和一组锐线峰带构成,激发光谱中的最强峰为393 nm(~7F_0→~5L_6)。通过393 nm波段对系列试样进行有效激发,收集到发射光谱均位于550 nm~750 nm,且由发射光谱中出现多条锐线峰,在614 nm(~5D_0→~7F_2)处发射峰最强,Eu~(3+)的595 nm(~5D_0→~7F_1)发射峰劈裂产生了590 nm、595 nm和599 nm处的三个分裂峰,而614 nm(~5D_0→~7F_2)发射峰劈裂为614 nm、617 nm、619 nm、622 nm和627 nm处的五个分裂峰,Eu~(3+)取代Ba~(2+)进入基质晶格BaAl_2Si_2O_8中,与其临近的氧配体形成了C2的点群对称性和Eu~(3+)主要占据非反演对称中心格位。系统研究了该系列荧光粉发光性能与掺杂离子Eu~(3+)浓度的关联。研究结果显示,当掺杂离子Eu~(3+)浓度x≤0.03时,荧光粉的发光强度随着掺杂离子Eu~(3+)浓度x的增加而增加,当x0.03时,随x的增加而减小。试样的色坐标不随掺杂离子Eu~(3+)浓度改变而改变;该系列荧光粉浓度淬灭机理为电偶极–电偶极相互作用。  相似文献   

7.
采用溶胶-凝胶法制备了掺杂铕、铽离子(Eu~(3+)、Tb~(3+))的硼酸钇YBO3-2SiO_2的白色发光体,通过X射线粉末衍射仪(XRD)、红外光谱(FT-IR)、激发及发射光谱表征和研究了样品的结构和发光性能,对于共掺杂的发白光的Eu~(3+)/Tb~(3+):YBO_3-2SiO_2发光体,900℃时,样品主要以YBO3形式存在,Eu~(3+)/Tb~(3+)的最佳掺杂摩尔浓度为9.0%/9.0%。  相似文献   

8.
Eu~(2+)和Mn~(2+)激活的碱土金属铝酸盐的阴极射线发光   总被引:1,自引:0,他引:1  
本文研究了不同Eu~(2+)浓度激活的Sr_4Al_(14)O_(25),BaMg_2Al_(16)O_(27)和BaMgAl_(10)O_(17)铝酸盐的阴极射线发光性质,并与其光致发光性质进行比较。BaMg_2Al_(26)O_(27):Eu~(2+)中掺入Mn~(2+)后可得到发射带半宽度只有27nm的绿色荧光粉。  相似文献   

9.
《稀土》2016,(2)
利用静电纺丝和高温煅烧相结合的方法制备了一维Eu~(3+)掺杂In_2O_3无机纳米纤维,并对其发光性能和发光机理进行研究。借助SEM、TG、XRD和EDX对样品的形貌、热分解、晶相和成分进行分析,利用荧光分光光度计测试了样品在室温下的光致发光性能。结果显示,静电纺Eu~(3+)掺杂前驱体纤维成型良好,经700℃煅烧5 h制备的In_2O_3∶Eu~(3+)纳米纤维仍保持纤维状形貌,但纤维直径与前驱体纤维相比明显减小;样品XRD衍射峰均与立方铁锰矿型In2O3的衍射峰一致,没有出现Eu_2O_3的衍射峰,样品EDX能谱分析表明煅烧后样品中含有In、O、Eu元素,且Eu含量与实际掺杂浓度接近。样品的室温发射光谱显示,经290 nm光激发后,在597 nm、612 nm和629 nm处出现Eu3+的发射峰,其中612 nm处的发射峰强度最大。  相似文献   

10.
Na_2WO_4:Eu~(3+),Tb~(3+)光致发光材料的发光性质和能量传递   总被引:2,自引:1,他引:1  
利用溶胶-凝胶法,将激活离子Eu~(3+)和Tb~(3+)以单一或混合的形式掺入体系得到了光致发光材料.分别研究了材料中激活离子Eu~(3+)和Tb~(3+)的含量及其离子之间的能量传递关系.主要利用材料的三维荧光光谱,激发光谱和发射光谱对其的发光性质进行了分析;结果发现,材料中有两个发光中心,分别为Eu~(3+)和Tb~(3+),在不同的波长光的激发下得到的材料的红绿色发光强度不同,而且Eu~(3+)和Tb~(3+)的掺杂浓度比对发光色度影响很大.所以可以根据选择最适合的Eu~(3+)和Tb~(3+)的浓度比来控制材料的发光色,也可以通过不同的激发波长对材料的色度进行微调.  相似文献   

11.
采用水热法制备具有单一相六方晶系的LaF_3:Eu~(3+)纳米荧光粉.通过X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、光致发光光谱(PL)和荧光衰减曲线对LaF_3:Eu~(3+)纳米荧光粉进行表征. LaF_3:Eu~(3+)荧光粉的激发光谱主要由250 nm处的宽带(O2-→Eu3+的电荷转移跃迁)和一些尖峰(Eu3+f-f跃迁)构成,其中位于近紫外区396 nm处有一较强的激发峰.通过发射光谱探测Eu3+在LaF3晶体中的局部晶场环境.在298 K下激发光谱和发射光谱可知,在六方晶系的LaF3纳米晶体中的Eu3+晶格位置从D4h降至到C2v,这是由于晶格变化所造成的.在396 nm激发下,观测到较优掺杂浓度为10%的LaF_3:Eu~(3+)荧光粉在591 nm(5D0→7F1跃迁)处有强烈的红色发射峰.其发光性能表明,LaF_3:Eu~(3+)红色荧光粉在近紫外发光二极管领域具有潜在的应用价值.  相似文献   

12.
以三氧化二铕和正硅酸乙酯为原材料,利用溶胶-凝胶法、高温机械力化学法合成了SiO_2∶Eu~(3+)粉体.用X射线衍射(XRD)、扫描电镜(SEM)表征了材料的结构和形貌,采用激发光谱、发射光谱对荧光粉体的发光性能进行了测量.结果说明:溶胶-凝胶法、高温机械力化学法合成样品的发光性能随着热处理温度的增加先增强后减弱,分别在900℃和600℃达到最好,粉体平均粒度分别为2μm与1μm.与溶胶-凝胶法比较,高温机械力化学法的制备温度降低了300℃.且利用高温机械力化学法制备的样品的发光性能要好于溶胶-凝胶法制备的样品.  相似文献   

13.
采用高温固相法制备了K_2Gd_(1-x-y)(PO_4)(WO_4):x Sm~(3+),y Eu~(3+)新型红色荧光材料,通过利用X射线衍射谱(XRD)、荧光光谱对其结构及发光性能进行了研究。结果表明,稀土离子S~(3+)的掺入没有改变荧光粉的晶相;样品的激发光谱在394 nm有很强的激发峰,与近紫外LED芯片匹配,且Eu~(3+)的~5D_0→~7F_2电偶极跃迁表现出616 nm有较好的红光发射,Eu~(3+)的最佳掺杂量(摩尔分数)为y=0.3;Sm~(3+)进入晶格后,激发峰明显增强和变宽,表明Sm~(3+)对Eu~(3+)的发光起到敏化作用;K_2Gd_(0.68)(PO_4)(WO_4)∶0.3Eu~(3+),0.02Sm~(3+)样品在150℃时发光强度仍为初始温度的78%,具有良好的热稳定性且色纯度高,是一种潜在的白光LED用荧光粉。  相似文献   

14.
采用溶胶-凝胶法制备了Ca_(1-1.5x)MoO_4∶xEu~(3+)和Ca_(0.5)MoO_4∶0.25Eu~(3+),M~+(M=Li,Na,K)荧光粉,并对样品的物相结构、颗粒形貌及发光性能进行了分析。结果表明,样品属于四方晶系,颗粒接近八面体形状,大小为2~3μm。激发光谱显示,样品的激发中心分别位于364 nm、386 nm、396 nm、419 nm和466 nm,最大激发峰值位于396 nm。在396 nm近紫外光激发下,样品的发射中心分别位于596 nm、616 nm、656 nm、704 nm,特征发射峰为616 nm,Eu3+离子掺杂浓度为25%(体积分数)时发光强度最强,引入的3种电荷补偿剂M~+(M=Li,Na,K)中,Li+对发光强度的提高最为显著。  相似文献   

15.
《稀土》2017,(6)
采用改进的碱催化法和种子法分别制备出Eu~(3+)掺杂球形二氧化硅胶体微球,实验表明改进的碱催化法制备出的产物表面有絮状物质较多,且形貌不理想;采用种子法制备的Eu~(3+)掺杂二氧化硅合成的最终产物表面光滑、粒径均匀、单分散性和球形度均较好的Eu~(3+)掺杂的二氧化硅胶体微球。采用种子法掺杂不同浓度的Eu~(3+),其在紫外光的激发下,表现出明显的Eu~(3+)特征红光发射,并分析Eu(TTFA)_3掺杂SiO_2微球的发射光谱特性。最后得出种子法制备Eu~(3+)掺杂二氧化硅胶体微球的较佳浓度是4.5%(摩尔分数)。  相似文献   

16.
荧光粉是新一代照明器件的重要组成部分, T相碱土金属硅酸盐荧光粉具有独特的晶体结构,表现出优良的抗发光热猝灭性能。将Mn~(2+)引入具有青绿色发光的(Ba_(0.7)Ca_(0.29)Eu_(0.01))_2SiO_4荧光粉,通过Eu~(2+)-Mn~(2+)能量传递可以实现Mn~(2+)的红光发射。通过高温固相反应法制备了具有不同Mn含量的T相碱土金属硅酸盐荧光粉(Ba_(0.7)Ca_(0.29-z)Eu_(0.01)Mn_z)_2SiO_4。X射线衍射(XRD)图谱表明,所合成的样品都为纯相,晶格常数随Mn~(2+)含量增多而减小。通过稳态荧光发射光谱、激发光谱和荧光衰减曲线研究Eu~(2+)-Mn~(2+)能量传递过程,确认其机制为电多极作用,临界距离为3.433 nm。T相(Ba_(0.7)Ca_(0.29-z)Eu_(0.01)Mn_z)_2SiO_4荧光粉在200℃时的发光强度仍可保持室温时的67%~80%,抗发光热猝灭性能优异。通过改变Mn的含量,可以调控Eu~(2+)的蓝光峰与Mn~(2+)的红光峰之间的相对比例,从而实现从冷白光到暖白光的单一基质白光发射。  相似文献   

17.
以MgMoO_4为基质,Eu~(3+)为激活剂,NH_4Cl为助熔剂,采用高温固相法合成白光LED用MgMoO_4:Eu~(3+)红色荧光粉。通过差示扫描量热与热重分析(DSC/TG)研究合成荧光粉的最佳温度,利用X射线衍射仪(XRD)、扫描电镜(SEM)和傅里叶红外光谱仪(FT-IR)研究荧光粉的结构,并用荧光光谱仪对荧光粉的发光效果进行检测。结果表明:用NH_4Cl作为助熔剂,合成MgMoO_4:Eu~(3+)荧光粉的最佳温度为900℃。添加NH_4Cl后,MgMoO_4:Eu~(3+)荧光粉的结构得到优化,颗粒呈椭球形,粒径约为0.5~1μm。395 nm和465 nm波长激发的发射光谱由一系列尖峰组成,分别位于592 nm(~5D_0→~7F_1),615 nm(~5D_0→~7F_2)和699 nm(~5D_0→~7F_4)处,其中615 nm处的发射峰强度最大,属于Eu~(3+)的超灵敏电偶极跃迁。添加NH_4Cl可明显提高MgMoO_4:Eu~(3+)荧光粉的激发与发射峰的强度,最佳添加量(n(NH_4Cl)/n(MgO))为1%,此时发射光谱的强度是未添加NH_4Cl时的7倍左右,395 nm激发的发射光谱对应的最佳Eu~(3+)浓度为0.1,465 nm激发的发射光谱对应的最佳Eu~(3+)浓度为0.15。  相似文献   

18.
将具有氧蒽结构的光转换剂加入Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)荧光粉,可以使夜光纤维的发射光谱红移,发出红色光。采用两种不同的偶联剂对发光材料和光转换剂进行偶联,制备一种能够发出红光的发光材料。借助荧光分光光度计、长余辉荧光测试仪检测红光发光性能,比较光转换剂对发光材料的包覆效果,以提高发光材料向光转换剂的能量传递效率,为开发新型的、发光性能较好的红色夜光纤维提供一定的理论依据。  相似文献   

19.
本文观察不同浓度的Eu~3和Bi~(3+)在具有立方晶系的Y_3SbO_7中发光性能及Bi~(3+)→Eu~(3+)的能量传递。Y_3SbO_7∶Eu~(3+)、Bi~(3+)磷光体在393nm激发下,Bi~(3+)将吸收紫外光的一部分能量传递给Eu~(3+),使其红光发射增强。其余的能量则以兰光(440nm)和绿光(540nm)发射。其“相对强度比”与合成温度有关,该磷光体可能是一种在多波段发光的新材料。  相似文献   

20.
采用高温固相反应合成Y0.3Ca0.7Ti x Si1-x O3∶Pr3+0.0015(x=0.1,0.3,0.5,0.7,0.9)红色系列粉末状发光材料。经X射线衍射分析产物为两相,分别为CaTiO3和Ca4Y6O(SiO4)6。检测了材料的激发光谱和发射光谱。发射光谱的峰值位于613 nm,对应于Pr3+的1D2-3H4跃迁。随着Si含量值的增大,激发光谱在340 nm附近的吸收增强,同时提高发射光谱的强度,当Si含量为0.3时,强度达到最大值;但过量硅的加入会导致发射光谱强度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号