首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties and oxidation resistance of Nb-4Si-20Ti-6Hf-yCr alloys (where y = 6, 10, 14 at. pct) with an NbSS-dominant NbSS/Nb3Si/Nb5Si3 microstructure at room and/or high temperatures were primarily studied. It was found that at room temperature, fracture toughness was decreased by Cr additions, the fracture mode of the NbSS phase was intergranularly cleavage, and the silicides (Nb3Si and Nb5Si3) fractured in a brittle manner. It is interesting that strength as a function of Cr content is dependent on temperature. Up to 1423 K (1150 °C), the strength was improved by Cr additions, whereas above that temperature, the strength decreased. As the Cr content increased from 6 to 14 at. pct, for example, the yield strength σ 0.2 increased from 198 to 258 MPa at 1423 K (1150 °C) but decreased from 109 to 83 MPa at 1623K (1350 °C). Cr additions cannot improve the oxidation resistance of this NbSS-dominant microstructure considerably; the weight gain at 100 hours of air exposure at 1523 K (1250 °C) was 255 mg/cm2 at a nominal Cr content of 6 at. pct and 220 mg/cm2 at a Cr content of 14 at. pct.  相似文献   

2.
X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy were used to investigate the microstructures and orientation relationships (ORs) of Nb-16Si-22Ti-2Al-2Hf-(2,17)Cr alloys (hereafter referred to as 2Cr and 17Cr alloys, respectively). The mechanical properties of the two alloys at room and/or high temperatures were compared. The 2Cr alloy comprised NbSS and (α + β)-Nb5Si3 phases, while the 17Cr alloy consisted of NbSS, (α + β)-Nb5Si3 and Laves Cr2Nb phases with a C15 structure. The β-Nb5Si3 and Laves Cr2Nb phases exhibited variable ORs with respect to the NbSS phase. The Laves Cr2Nb phase was found to play a negative role on the fracture toughness at room temperature and on the compressive strength at temperatures from 1523 K to 1623 K (1250 °C to 1350 °C). The fracture toughness and the compressive yield strength at 1623 K (1350 °C) both decreased from 14.4 to 10.3 MPa m1/2 and from 300 to 85 MPa, respectively, when the nominal Cr content increased from 2 to 17 at. pct. Finally, the fracture modes of these typical NbSS/Nb5Si3 and NbSS/Nb5Si3/Cr2Nb microstructures under bending and compression conditions at room and high temperatures were investigated and discussed.  相似文献   

3.
The tensile deformation behavior of extruded samples of Mg-0.8 pct Gd and Mg-0.8 pct Gd-0.5 pct Mn-0.45 pct Sc (at. pct) alloys has been studied. Both alloys exhibit serrated flow when they are tensile tested at temperatures ranging from 150 °C to 300 °C and at strain rates of 1.67 × 10−4 s−1 to 1.67 × 10−2 s−1, and this serrated flow behavior is significantly affected by postextrusion heat treatments. Combined with observations made by transmission electron microscopy (TEM) and three-dimensional atom probe (3DAP), the serrated flow is attributed to dynamic interactions between solute atoms and gliding dislocations. It is suggested that Gd atoms in the solid solution matrix of magnesium are mainly responsible for the serrations in the two alloys. The additions of Mn and Sc to the Mg-Gd alloy strengthen the dynamic solute-dislocation interactions and lead to a lower critical strain and larger stress drops of the serrated flow in the Mg-Gd-Mn-Sc alloy.  相似文献   

4.
The hot deformation behaviors of β brass in the temperature range of 550°C to 800°C and α-β brass in the temperature range of 450°C to 800°C have been characterized in the strain rate range of 0.001 to 100 s−1 using processing maps developed on the basis of the Dynamic Materials Model. The map for β brass revealed a domain of superplasticity in the entire temperature range and at strain rates lower than 1 s−1, with a maximum efficiency of power dissipation of about 68 pct. The temperature variation of the efficiency of power dissipation in the domain is similar to that of the diffusion coefficient for zinc in β brass, confirming that the diffusion-accommodated flow controls the superplasticity. The material undergoes microstructural instability in the form of adiabatic shear bands and strain markings at temperatures lower than 700°C and at strain rates higher than 10 s−1. The map for α-β brass revealed a wide domain for processing in the temperature range of 550°C to 800°C and at strain rates lower than 1 s−1, with a maximum efficiency of 54 pct occurring at about 750°C and 0.001 s−1. In the domain, the α phase undergoes dynamic recrystallization and controls the hot deformation of the alloy, while the β phase deforms superplastically. At strain rates greater than 1 s−1, α-β brass exhibits microstructural instabilities manifested as flow rotations at lower temperatures and localized shear bands at higher temperatures.  相似文献   

5.
6.
The shape-memory characteristics in the Ni41.3Ti38.7Nb20 alloy have been investigated by means of cryogenic tensile tests and differential scanning calorimetry measurement. The martensite start temperature M s could be adjusted to around the liquid nitrogen temperature by controlling the cooling condition. The reverse transformation start temperature A′ s rose to about 70 °C after the specimens were deformed to 16 pct at different temperatures, where the initial states of the specimens were pure austenite phase, martensite phase, or duplex phase. The shape-memory effect and the reverse transformation temperatures were studied on the specimens deformed at (M s +30 °C). It was found that once the specimens deformed to 16 pct, a transformation hysteresis width around 200 °C could be attained and the shape recovery ratio could remain at about 50 pct. The Ni41.3Ti38.7Nb20 alloy is a promising candidate for the cryogenic engineering applications around the liquid nitrogen temperature. The experimental results also indicated that the transformation temperature interval of the stress-induced martensite is smaller by about one order of magnitude than that of the thermal-induced martensite.  相似文献   

7.
Polycrystalline and 〈100〉 single crystalline semiconductor grade silicon samples have been subjected to uniaxial compression at strain rates from 10−5 to 12 s−1 at temperatures ranging from 1100 to 1380 °C. Both intrinsic and p-type polycrystalline material and p-type single crystalline material were tested. Except at the highest temperature and lowest strain rate, no steady state deformation was observed for the polycrystalline material. In all other cases strain hardening was observed which increased with increasing strain rates. The polycrystalline material could be compressed by as much as 50 pct at 1380 °C and a strain rate of 7 s−1 without cracking. An axial stress of approximately 170 MPa produces a strain rate of 5 s−1 at 1380 °C. The stress necessary to produce a given strain rate increases rapidly with decreasing temperature while the ductility rapidly decreases. A preliminary forming limit diagram has also been determined for the polycrystalline material at 1380 °C. The deformation rate-controlling process in the polycrystalline material at high stresses could be the production of vacancies on jogged dislocations. Formerly with the Department of Materials Science and Engineering, University of Pennsylvania  相似文献   

8.
9.
The microstructural, phase, and chemical stability of Nb/Nb5Si3 microlaminates was investigated at temperatures ranging from 1200 °C to 1600 °C. Freestanding Nb/Nb5Si3 microlaminates were prepared by sputter deposition and their stability was investigated by annealing either in vacuum or in an Ar atmosphere. The microlaminates were generally structurally stable, with no evidence of layer pinchoff, even after annealing at 1600 °C. However, a small volume fraction (<2 pct) of voids formed in the silicide layers at 1500 °C and 1600 °C, which are attributed either to the Kirkendall diffusion of Si or to the growth of silicide grains. In terms of phase stability, there was no discernible dissolution of the Nb5Si3 layers and no silicide precipitates in the Nb layers following anneals at 1400 °C. Annealing at higher temperatures, though, resulted in the formation of non-equilibrium Nb3Si on the Nb/Nb5Si3 interfaces. This phase is thought to precipitate from the supersaturated Nb-Si solid solution on cooling, and is stabilized by the development of tensile stresses in the Nb layers. The most pervasive observed high-temperature breakdown mechanism was chemical in nature, namely, the loss of Si via sublimation to the environment. The Si loss was partially suppressed either by annealing in a Si-rich atmosphere or by annealing in Ar.  相似文献   

10.

Third generation γ-titanium aluminides with nominal compositions Ti–45Al–5Nb–0.2B–0.2C and Ti–45Al–10Nb–0.2B–0.2C were investigated to identify the phase transformation and their morphological stability with temperature. Electron microscopy and differential scanning calorimetry were employed for the characterization of phases and for recording the corresponding transformations, respectively. It has been inferred that the order–disorder transformation temperatures α2 → α increased with increasing Niobium (Nb), while the α-transus temperature decreases. The stability of the microstructure for both alloys with temperature were also investigated. Mass change measured for the heating rates 20 °C s−1 and 30 °C s−1 reveals that the alloy Ti–45Al–10Nb–0.2–0.2C shows stability up to 1100 °C, and the alloy Ti–45Al–5Nb–0.2B–0.2C is stable up to 900 °C. The orientation relationship between the phases indicates that with the change in shape of the α phase from lamellar to equiaxed, it deviates from the Blackburn orientation relationship.

  相似文献   

11.
A commercial Al-6 pct Mg-0.3 pct Sc-0.3 pct Mn alloy subjected to equal-channel angular extrusion (ECAE) at 325 °C to a total strain of about 16 resulted in an average grain size of about 1 μm. Superplastic properties and microstructural evolution of the alloy were studied in tension at strain rates ranging from 1.4 × 10−5 to 1.4 s−1 in the temperature interval 250 °C to 500 °C. It was shown that this alloy exhibited superior superplastic properties in the wide temperature range 250 °C to 500 °C at strain rates higher than 10−2 s−1. The highest elongation to failure of 2000 pct was attained at a temperature of 450 °C and an initial strain rate of 5.6 × 10−2 s−1 with the corresponding strain rate sensitivity coefficient of 0.46. An increase in temperature from 250 °C to 500 °C resulted in a shift of the optimal strain rate for superplasticity, at which highest ductility appeared, to higher strain rates. Superior superplastic properties of the commercial Al-Mg-Sc alloy are attributed to high stability of ultrafine grain structure under static annealing and superplastic deformation at T ≤ 450 °C. Two different fracture mechanisms were revealed. At temperatures higher than 300 °C or strain rates less than 10−1 s−1, failure took place in a brittle manner almost without necking, and cavitation played a major role in the failure. In contrast, at low temperatures or high strain rates, fracture occurred in a ductile manner by localized necking. The results suggest that the development of ultrafine-grained structure in the commercial Al-Mg-Sc alloy enables superplastic deformation at high strain rates and low temperatures, making the process of superplastic forming commercially attractive for the fabrication of high-volume components.  相似文献   

12.
In the current work, silicide coatings were produced on the Nb alloy (Nb-1 pct Zr-0.1 pct C) using the halide activated pack cementation (HAPC) technique. Coating parameters (temperature and time) were optimized to produce a two-layer (Nb5Si3 and NbSi2) coating on the Nb alloy. Subsequently, the oxidation behavior of the Nb alloy (Nb-1 pct Zr-0.1 pct C) and silicide-coated Nb alloy was studied using thermogravimetric analysis (TGA) and isothermal weight gain oxidation experiments. Phase identification and morphological examinations were carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. TGA showed that the Nb alloy started undergoing accelerated oxidation at and above 773 K (500 °C). Isothermal weight gain experiments carried out on the Nb alloy under air environment at 873 K (600 °C) up to a time period of 16 hours exhibited a linear growth rate law of oxidation. In the case of silicide-based coatings, TGA showed that oxidation resistance of silicide coatings was retained up to 1473 K (1200 °C). Isothermal weight gain experiments on the silicide coatings carried out at 1273 K (1000 °C) in air showed that initially up to 8 hours, the weight of the sample increased, and beyond 8 hours the weight of the sample remained constant. The oxide phases formed on the bare samples and on the coated samples during oxidation were found to be Nb2O5 and a mixture of SiO2 and Nb2O5 phases, respectively. SEM showed the formation of nonprotective oxide layer on the bare Nb alloy and a protective (adherent, nonporous) oxide layer on silicide-coated samples. The formation of protective SiO2 layer on the silicide-coated samples greatly improved the oxidation resistance at higher temperatures.  相似文献   

13.
A minor addition of B to the Ti-6Al-4V alloy, by ~0.1 wt pct, reduces its as-cast prior β grain size by an order of magnitude, whereas higher B content leads to the presence of in situ formed TiB needles in significant amounts. An experimental investigation into the role played by these microstructural modifications on the high-temperature deformation behavior of Ti-6Al-4V-xB alloys, with x varying between 0 wt pct and 0.55 wt pct, was conducted. Uniaxial compression tests were performed in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C) and in the strain rate range of 10–3 to 10+1 s–1. True stress–true strain responses of all alloys exhibit flow softening at lower strain rates and oscillations at higher strain rates. The flow softening is aided by the occurrence of dynamic recrystallization through lath globularization in high temperature (1173 K to 1273 K [900 °C to 1000 °C]) and a lower strain rate (10–2 to 10–3 s–1) regime. The grain size refinement with the B addition to Ti64, despite being marked, had no significant effect on this. Oscillations in the flow curve at a higher strain rate (100 to 10+1 s–1), however, are associated with microstructural instabilities such as bending of laths, breaking of lath boundaries, generation of cavities, and breakage of TiB needles. The presence of TiB needles affected the instability regime. Microstructural evidence suggests that the matrix cavitation is aided by the easy fracture of TiB needles.  相似文献   

14.
Superplastic elongations in excess of 400 pct have been observed in tension testing at 573 K (300 °C) and strain rate έ= 2 × 10-3 s-1 for a thermomechanically processed Al-10.2 pct Mg-0.52 pct Mn alloy. The thermomechanical processing consists of solution treatment and hot working, followed by extensive warm rolling at 573 K (300 °C), a temperature below the solvus for Mg in the alloy. This processing results in a fine subgrain structure in conjunction with refined and homogeneously distributed β(Al8Mg5) and MnAl6 precipitates. This structure does not statically recrystallize when annealed at 573 K (300 °C) but appears to recrystallize continuously during deformation at such a temperature and the resulting fine grain structure deforms with minimal cavitation. At temperatures above the Mg-solvus,e.g., 673 K (400 °C), recrystallization and growth occur readily resulting in rela tively coarser structures which deform superplastically but with extensive grain boundary sliding and cavitation. Formerly in Materials Group, Mechanical Engineering, Naval Postgraduate School Formerly Graduate Student in Mechanical Engineering, Naval Postgraduate School  相似文献   

15.
The constitutive flow behavior of α brass in the temperature range of 500°C to 850°C and strain rate range of 0.001 to 100 s−1 has been characterized with the help of a power dissipation map generated on the basis of the principles of the Dynamic Materials Model. The map revealed a domain of dynamic recrystallization in the temperature range of 750°C to 850°C and in the strain rate range of 0.001 to 1 s−1, with a maximum efficiency of power dissipation of about 54 pct. The optimum hot working conditions are 850°C and 0.001 s−1, and these match with those generally employed in industrial practice. In the temperature range of 550°C to 750°C and strain rates lower than 0.01 s−1, the efficiency of power dissipation decreases with decreasing strain rate, with its minimum at 650°C. In this regime, solute drag effects similar to dynamic strain aging occur to impair the hot workability. The material undergoes microstructural instabilities at temperatures of 500°C to 650°C and at strain rates of 10 to 100 s−1, as predicted by the continuum instability criterion. The manifestations of the instabilities have been observed to be adiabatic shear bands.  相似文献   

16.
17.
The hot deformation behavior of Ti-55Ni (at. pct) alloy was studied using compression testing at 1173 K (900 °C) to 1323 K (1050 °C) and at the strain rates of 0.001 to 0.35 s−1. The microstructure evolution was characterized using optical and scanning electron microscopy (SEM). The influences of hot-working parameters on the flow stress and microstructural features of this alloy were then analyzed. The results indicate that, depending on the temperature and strain rate, the dynamic recrystallization (DRX) is the dominate mechanism. Besides, the particle-stimulated nucleation (PSN) mechanism could partially recrystallize the structure. The PSN phenomenon is of significant importance for the Ti-55Ni (at. pct) that suffers from insufficient workability because of its high content of intermetallic phases. It is of interest that the discontinuous yielding phenomenon has been observed when the specimens were deformed at 1173 K (900 °C). Finally, the optimum parameters for hot working of Ti-55Ni (at. pct) alloy are determined as well.  相似文献   

18.
The unnotched and notched tensile behavior of the β-phase constituent (Nb with Si in solid solution) of the (Nb)/Nb5Si3 composite has been investigated at room temperature and -196 °C. At room temperature, the unnotched tensile behavior comprises significant strengthening due to Si, low strain-rate sensitivity, low strain hardening, extensive ductility, and ductile microvoid coalescence fracture, even at strain rates as high as 1.1 s−1. At −196 °C, the unnotched alloy exhibited much higher strength, good ductility, and cleavage fracture. At room temperature, the notched specimens exhibited cleavagelike fracture with significant plasticity, and at −-196 °C, they exhibited cleavagelike fracture with much lower plasticity at the notch. A finite-element analysis (FEA) of stress and strain fields in the vicinity of the notch root, together with un-notched tensile behavior, indicates that plasticity plays an important role in nucleating cracks, while the high-axial tensile stress component governs crack propagation. These results are used to rationalize the observed toughening and fracture behavior of a (Nb)/Nb5Si3 composite.  相似文献   

19.
The elevated-temperature deformation behavior of polycrystalline molybdenum disilicide (MoSi2), in the range of 1000 °C to 1350 °C at the strain rates of 10−3, 5×10−4, or 10−4 s−1, has been studied. The yield strength, post-yield flow behavior comprising strain hardening and serrations, as well as some of the deformation microstructures of reaction-hot-pressed (RHP) MoSi2 samples, processed by hot pressing an elemental Mo + Si powder mixture and having a grain size of 5 μm and oxygen content of 0.06 wt pct, have been compared with those of samples prepared by hot pressing of commercial-grade Starck MoSi2 powder, with a grain size of 27 μm and oxygen content of 0.89 wt pct. While the fine-grained RHP MoSi2 samples have shown higher yield strength at relatively lower temperatures and higher strain rates, the coarse-grained Starck MoSi2 has a higher yield at decreasing strain rates and higher temperatures. The work-hardening or softening characteristics are dependent on grain size, temperature, and strain rate. Enhanced dislocation activity and dynamic recovery, accomplished by arrangement of dislocations in low-angle boundaries, characterize the deformation behavior of fine-grained RHP MoSi2 at a temperature of 1200 °C and above and are responsible for increased uniform plastic strain with increasing temperature. The silica content appears to be less effective in degrading the high-temperature yield strength if the grain size is coarse, but leads to plastic-flow localization and strain softening in Starck MoSi2. Serrated plastic flow has also been observed in a large number of samples, mostly when deformed at specific combinations of strain rates and temperatures.  相似文献   

20.
A uranium-6 niobium alloy was shown to exhibit superplasticity. A thermomechanical processing (TMP) sequence was used to develop the ultrafine grain size essential for superplastic behavior. Strain-rate sensitivity, maximum elongation, and flow curve data indicated that this alloy is superplastic above the monotectoid temperature (647 °C) in the equilibrium γ1, single-phase, temperature regime. The existence of superplasticity in the single-phase temperature regime was explained by the presence of metastable γ2 at these higher temperatures. Sluggish niobium diffusion and the resultant slow dissolution kinetics were shown to be responsible for this anomalous “single-phase” superplastic behavior. An engineering elongation of 658 pct was obtained at 685 °C for a constant true strain rate of 2.5 × 10-4 s-1 which required an initial flow stress of only 2.8 MPa. A grain growth kinetic study, along with flow curve information, has also shown that superplastic forming (SPF) must be completed within 2 hours at 670 °C to obtain maximum ductility with the lowest forming pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号