首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高斯过程是新近发展的一种机器学习方法,对处理复杂非线性问题具有很好的适应性。针对CFG桩复合地基承载力难以合理确定的问题,提出了基于高斯过程的CFG桩复合地基承载力预测模型。该模型通过对少量训练样本的学习,就可以建立CFG桩复合地基承载力与其影响因素之间的复杂非线性映射关系。将模型应用于工程实例,研究结果表明,CFG桩复合地基承载力预测的高斯过程模型是科学可行的。高斯过程模型的预测精度高,适用性强,具有算法参数自适应化的特点且易于实现,具有良好的工程应用前景。  相似文献   

2.
Failure mode (FM) and bearing capacity of reinforced concrete (RC) columns are key concerns in structural design and/or performance assessment procedures. The failure types, i.e., flexure, shear, or mix of the above two, will greatly affect the capacity and ductility of the structure. Meanwhile, the design methodologies for structures of different failure types will be totally different. Therefore, developing efficient and reliable methods to identify the FM and predict the corresponding capacity is of special importance for structural design/assessment management. In this paper, an intelligent approach is presented for FM classification and bearing capacity prediction of RC columns based on the ensemble machine learning techniques. The most typical ensemble learning method, adaptive boosting (AdaBoost) algorithm, is adopted for both classification and regression (prediction) problems. Totally 254 cyclic loading tests of RC columns are collected. The geometric dimensions, reinforcing details, material properties are set as the input variables, while the failure types (for classification problem) and peak capacity forces (for regression problem) are set as the output variables. The results indicate that the model generated by the AdaBoost learning algorithm has a very high accuracy for both FM classification (accuracy = 0.96) and capacity prediction (R2 = 0.98). Different learning algorithms are also compared and the results show that ensemble learning (especially AdaBoost) has better performance than single learning. In addition, the bearing capacity predicted by the AdaBoost is also compared to that by the empirical formulas provided by the design codes, which shows an obvious superior of the proposed method. In summary, the machine learning technique, especially the ensemble learning, can provide an alternate to the conventional mechanics-driven models in structural design in this big data time.  相似文献   

3.
Neural Computing and Applications - Concrete-filled steel tube (CFST) columns are widely used in the construction industry. Prediction of the ultimate bearing capacity of CFST columns is...  相似文献   

4.
Kaveh  A.  Dadras  A.  Geran Malek  N. 《Engineering with Computers》2019,35(3):813-832

This paper presents a comparative study of the application of parameter-less meta-heuristic algorithms in optimum stacking sequence design of com of composite laminates for maximum buckling load capacity. Here, JAYA algorithm, along with Salp Swarm Algorithm, Colliding Bodies Optimization, Grey Wolf Optimizer, and Genetic Algorithm with standard setting and self-adaptive version are implemented to the problem of composite laminates with 64 graphite/epoxy plies with conventional ply angles, under several bi-axial cases and panel aspect ratios. Optimization objective is to maximize the buckling load of symmetric and balanced laminated plate. Statistical analysis are performed for six cases and the results are compared in terms of mean, standard deviation, the coefficient of variation, best and worst solutions, accompanied by the percentage of the independent runs that found the global optimum \(\left( {{R_{{\text{op}}}}} \right)\) and near global optimum \(\left( {{R_{{\text{no}}}}} \right)\). The Kruskal–Wallis nonparametric test is also utilized to make further confidence in the examinations. Numerical results show the high capability of the JAYA algorithm for maximizing the buckling capacity of composite plates.

  相似文献   

5.

The type of materials used in designing and constructing structures significantly affects the way the structures behave. The performance of concrete and steel, which are used as a composite in columns, has a considerable effect upon the structure behavior under different loading conditions. In this paper, several advanced methods were applied and developed to predict the bearing capacity of the concrete-filled steel tube (CFST) columns in two phases of prediction and optimization. In the prediction phase, bearing capacity values of CFST columns were estimated through developing gene expression programming (GEP)-based tree equation; then, the results were compared with the results obtained from a hybrid model of artificial neural network (ANN) and particle swarm optimization (PSO). In the modeling process, the outer diameter, concrete compressive strength, tensile yield stress of the steel column, thickness of steel cover, and the length of the samples were considered as the model inputs. After a series of analyses, the best predictive models were selected based on the coefficient of determination (R2) results. R2 values of 0.928 and 0.939 for training and testing datasets of the selected GEP-based tree equation, respectively, demonstrated that GEP was able to provide higher performance capacity compared to PSO–ANN model with R2 values of 0.910 and 0.904 and ANN with R2 values of 0.895 and 0.881. In the optimization phase, whale optimization algorithm (WOA), which has not yet been applied in structural engineering, was selected and developed to maximize the results of the bearing capacity. Based on the obtained results, WOA, by increasing bearing capacity to 23436.63 kN, was able to maximize significantly the bearing capacity of CFST columns.

  相似文献   

6.

The pile bearing capacity is considered as the most essential factor in designing deep foundations. Direct determination of this parameter in site is costly and difficult. Hence, this study presents a new technique of intelligence system based on the adaptive neuro-fuzzy inference system (ANFIS)-group method of data handling (GMDH) optimized by the imperialism competitive algorithm (ICA), ANFIS-GMDH-ICA for forecasting pile bearing capacity. In this advanced structure, the ICA role is to optimize the membership functions obtained by ANFIS-GMDH technique for receiving a higher accuracy level and lower error. To develop this model, the results of 257 high strain dynamic load tests (performed by authors) were considered and used in the analysis. For comparison purposes, ANFIS and GMDH models were selected and built for pile bearing capacity estimation. In terms of model accuracy, the obtained results showed that the newly developed model (i.e., ANFIS-GMDH-ICA) receives more accurate predicted values of pile bearing capacity compared to those obtained by ANFIS and GMDH predictive models. The proposed ANFIS-GMDH-ICA can be utilized as an advanced, applicable and powerful technique in issues related to foundation engineering and its design.

  相似文献   

7.
张涛  徐晓苏 《控制与决策》2010,25(7):1109-1112
基于自适应神经模糊逻辑推理系统(ANHS),在全球定位系统(GPS)信号阻塞时,为惯性导航系统(INS)提供位置和速度修正量以提高系统的精度和鲁棒性.首先用小波对数据信号进行降噪处理;然后设定INS的位置或速度作为ANHS的输入参数,经训练后输出相应修正量,训练期望值为经小波多分辨率分析得到的位置误差和速度误差.实验表明,无GPS信号时定位精度比同条件下卡尔曼滤波精度提高约40%,因此该方法可为车辆提供可靠有效的导航定位服务.  相似文献   

8.
Considered as cost-efficient, reliable and aesthetic alternatives to the conventional retaining structures, Mechanically Stabilized Earth Walls (MSEWs) have been increasingly used in civil engineering practice over the previous decades. The design of these structures is conventionally based on engineering guidelines, requiring the use of trial and error approaches to determine the design variables. Therefore, the quality and cost effectiveness of the design is limited with the effort, intuition, and experience of the engineer while the process transpires to be time-consuming, both of which can be solved by developing automated approaches. In order to address these issues, the present study introduces a novel framework to optimize the (i) reinforcement type, (ii) length, and (iii) layout of MSEWs for minimum cost, integrating metaheuristic optimization algorithms in compliance with the Federal Highway Administration guidelines. The framework is conjoined with optimization algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Differential Evolution (DE) and tested with a set of benchmark design problems that incorporate various types of MSEWs with different heights. The results are comparatively evaluated to assess the most effective optimization algorithm and validated using a well-known MSEW analysis and design software. The outcomes indicate that the proposed framework, implemented with a powerful optimization algorithm, can effectively produce the optimum design in a matter of seconds. In this sense, DE algorithm is proposed based on the improved results over GA, PSO, and ABC.  相似文献   

9.
Most of the papers devoted to scheduling problems with the learning effect concern the Wright’s learning curve. On the other hand, the study about learning has pointed out that the learning curve in practice is very often an S-shaped function, which has not been considered in scheduling. Thus, in this paper, a single processor makespan minimization problem with an S-shaped learning model is investigated. We prove that this problem is strongly NP-hard even if the experience provided by each job is equal to its normal processing time. Therefore, to solve this problem, we prove some eliminating properties that are used to construct a branch and bound algorithm and some fast heuristic methods. Since the proposed algorithms are dedicated for the general case, i.e., where job processing times are arbitrary non-increasing experience dependent functions, their efficiency is verified numerically for the S-shaped model.  相似文献   

10.
Recently, it was shown how the convergence of a class of multigrid methods for computing the stationary distribution of sparse, irreducible Markov chains can be accelerated by the addition of an outer iteration based on iterant recombination. The acceleration was performed by selecting a linear combination of previous fine-level iterates with probability constraints to minimize the two-norm of the residual using a quadratic programming method. In this paper we investigate the alternative of minimizing the one-norm of the residual. This gives rise to a nonlinear convex program which must be solved at each acceleration step. To solve this minimization problem we propose to use a deep-cuts ellipsoid method for nonlinear convex programs. The main purpose of this paper is to investigate whether an iterant recombination approach can be obtained in this way that is competitive in terms of execution time and robustness. We derive formulas for subgradients of the one-norm objective function and the constraint functions, and show how an initial ellipsoid can be constructed that is guaranteed to contain the exact solution and give conditions for its existence. We also investigate using the ellipsoid method to minimize the two-norm. Numerical tests show that the one-norm and two-norm acceleration procedures yield a similar reduction in the number of multigrid cycles. The tests also indicate that one-norm ellipsoid acceleration is competitive with two-norm quadratic programming acceleration in terms of running time with improved robustness.  相似文献   

11.
A model of legal reasoning with cases incorporating theories and values   总被引:4,自引:0,他引:4  
Reasoning with cases has been a primary focus of those working in AI and law who have attempted to model legal reasoning. In this paper we put forward a formal model of reasoning with cases which captures many of the insights from that previous work. We begin by stating our view of reasoning with cases as a process of constructing, evaluating and applying a theory. Central to our model is a view of the relationship between cases, rules based on cases, and the social values which justify those rules. Having given our view of these relationships, we present our formal model of them, and explain how theories can be constructed, compared and evaluated. We then show how previous work can be described in terms of our model, and discuss extensions to the basic model to accommodate particular features of previous work. We conclude by identifying some directions for future work.  相似文献   

12.
A Chebyshev polynomial-based unified model (CPBUM) neural network is introduced and applied to control a magnetic bearing systems. First, we show that the CPBUM neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural network. It turns out that the CPBUM neural network is more suitable in the design of controller than the conventional feedforward/recurrent neural network. Second, we propose the inverse system method, based on the CPBUM neural networks, to control a magnetic bearing system. The proposed controller has two structures; namely, off-line and on-line learning structures. We derive a new learning algorithm for each proposed structure. The experimental results show that the proposed neural network architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.  相似文献   

13.
We discuss worm algorithms for the 3-state Potts model with external field and chemical potential. The complex phase problem of this system can be overcome by using a flux representation where the new degrees of freedom are dimer and monomer variables. Working with this representation we discuss two different generalizations of the conventional Prokof’ev–Svistunov algorithm suitable for Monte Carlo simulations of the model at arbitrary chemical potential and evaluate their performance.  相似文献   

14.
The model of classification algorithms with representative cases is generalized to problems with binary information. A system of linear equations (on GF(2)) is used for the empirical hypotheses.Translated from Kibernetika, No. 5, pp. 36–39, September–October, 1989.  相似文献   

15.

In this study, for the issue of shallow circular footing’s bearing capacity (also shown as Fult), we used the merits of artificial neural network (ANN), while optimized it by two metaheuristic algorithms (i.e., ant lion optimization (ALO) and the spotted hyena optimizer (SHO)). Several studies demonstrated that ANNs have significant results in terms of predicting the soil’s bearing capacity. Nevertheless, most models of ANN learning consist of different disadvantages. Accordantly, we focused on the application of two hybrid models of ALO–MLP and SHO–MLP for predicting the Fult placed in layered soils. Moreover, we performed an Extensive Finite Element (FE) modeling on 16 sets of soil layer (soft soil placed onto stronger soil and vice versa) considering a database that consists of 703 testing and 2810 training datasets for preparing the training and testing datasets. The independent variables in terms of ALO and SHO algorithms have been optimized by taking into account a trial and error process. The input data layers consisted of (i) upper layer foundation/thickness width (h/B) ratio, (ii) bottom and topsoil layer properties (for example, six of the most important properties of soil), (iii) vertical settlement (s), (iv) footing width (B), where the main target was taken Fult. According to RMSE and R2, values of (0.996 and 0.034) and (0.994 and 0.044) are obtained for training dataset and values of (0.994 and 0.040) and (0.991 and 0.050) are found for the testing dataset of proposed SHO–MLP and ALO–MLP best-fit prediction network structures, respectively. This proves higher reliability of the proposed hybrid model of SHO–MLP in approximating shallow circular footing bearing capacity.

  相似文献   

16.
In the present research, a two-echelon location-routing problem with constraints of vehicle fleet capacity and maximum route length is considered. The problem’s objective is to determine the location and number of two types of capacitated facilities, the size of two different vehicle fleets, and the related routes on each echelon. Two algorithms hybrid genetic algorithm and simulated annealing are then applied to solve the problem. Results of numerical experiments show that the applied hybrid genetic and simulated annealing algorithms are much more effective than the solutions of the solved examples by the software LINGO. Finally, solutions of simulated annealing and hybrid genetic algorithms were compared with each other.  相似文献   

17.
探讨在讲授网络空间安全新技术时融入思政元素的教学方法。以量子通信、公钥基础设施、物理层安全、区块链、可信计算、隐私保护6个方面技术为教学内容,在讲授新技术的同时,分析我国科技人员的奋斗历程、研究成果以及未来目标。组织学生分工协作,交流学习体会,探寻科研规律,使学生不仅可以吸收最新技术知识,还可以掌握攻克科学问题的方法及所需的科学政治素养。为研究生课程思政的教育教学方法可以提供有益参考。  相似文献   

18.
Service systems are in significant danger of terrorist attacks aimed at disrupting their critical components. These attacks seek to exterminate vital assets such as transportation networks, services, and supplies. In the present paper, we propose a multi-period planning based on capacity recovery to allocate fortification/interdiction resources in a service system. The problem involves a dynamic Stackelberg game between a defender (leader) and an attacker (follower). The decisions of the defender are the services provided to customers and the fortification resources allocated to facilities in each period as the total demand-weighted distances are minimized. Following this, the attacker allocates interdiction resources to facilities that resulted in the service capacity reduction in each period. In this model, excess fortification/interdiction budgets and capacity in one period can be used in the next period. Moreover, facilities have a predefined capacity to serve the customers with varying demands during the time horizon. To solve this problem, two different types of approaches are implemented and compared. The first method is an exact reformulation algorithm based on the decomposition of the problem into a restricted master problem (RMP) and a slave problem (SP). The second one is a high performance metaheuristic algorithm, i.e., genetic algorithm (GA) developed to overcome the decomposition method’s impracticability on large-scale problem instances. We also compare the results with some novel metaheuristic algorithms such as teaching learning based optimization (TLBO) and dragonfly algorithm (DA). Computational results show the superiority of GA against TLBO and DA.  相似文献   

19.
Advances in wireless and mobile computing environments allow a mobile user to access a wide range of applications. For example, mobile users may want to retrieve data about unfamiliar places or local life styles related to their location. These queries are called location-dependent queries. Furthermore, a mobile user may be interested in getting the query results repeatedly, which is called location-dependent continuous querying. This continuous query emanating from a mobile user may retrieve information from a single-zone (single-ZQ) or from multiple neighbouring zones (multiple-ZQ). We consider the problem of handling location-dependent continuous queries with the main emphasis on reducing communication costs and making sure that the user gets correct current-query result. The key contributions of this paper include: (1) Proposing a hierarchical database framework (tree architecture and supporting continuous query algorithm) for handling location-dependent continuous queries. (2) Analysing the flexibility of this framework for handling queries related to single-ZQ or multiple-ZQ and propose intelligent selective placement of location-dependent databases. (3) Proposing an intelligent selective replication algorithm to facilitate time- and space-efficient processing of location-dependent continuous queries retrieving single-ZQ information. (4) Demonstrating, using simulation, the significance of our intelligent selective placement and selective replication model in terms of communication cost and storage constraints, considering various types of queries. Manish Gupta received his B.E. degree in Electrical Engineering from Govindram Sakseria Institute of Technology & Sciences, India, in 1997 and his M.S. degree in Computer Science from University of Texas at Dallas in 2002. He is currently working toward his Ph.D. degree in the Department of Computer Science at University of Texas at Dallas. His current research focuses on AI-based software synthesis and testing. His other research interests include mobile computing, aspect-oriented programming and model checking. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China, in 1996, and a Master's Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the Ph.D. degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu's research interests include distributed systems, wireless communications, mobile computing, and reliability and performance analysis. His Ph.D. research work focuses on the dependent and secure data replication and placement issues in network-centric systems. Latifur R. Khan has been an Assistant Professor of Computer Science department at University of Texas at Dallas since September 2000. He received his Ph.D. and M.S. degrees in Computer Science from University of Southern California (USC) in August 2000 and December 1996, respectively. He obtained his B.Sc. degree in Computer Science and Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, in November of 1993. Professor Khan is currently supported by grants from the National Science Foundation (NSF), Texas Instruments, Alcatel, USA, and has been awarded the Sun Equipment Grant. Dr. Khan has more than 50 articles, book chapters and conference papers focusing in the areas of database systems, multimedia information management and data mining in bio-informatics and intrusion detection. Professor Khan has also served as a referee for database journals, conferences (e.g. IEEE TKDE, KAIS, ADL, VLDB) and he is currently serving as a program committee member for the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD2005), ACM 14th Conference on Information and Knowledge Management (CIKM 2005), International Conference on Database and Expert Systems Applications DEXA 2005 and International Conference on Cooperative Information Systems (CoopIS 2005), and is program chair of ACM SIGKDD International Workshop on Multimedia Data Mining, 2004. Farokh Bastani received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, and the M.S. and Ph.D. degrees in Computer Science from the University of California, Berkeley. He is currently a Professor of Computer Science at the University of Texas at Dallas. Dr. Bastani's research interests include various aspects of the ultrahigh dependable systems, especially automated software synthesis and testing, embedded real-time process-control and telecommunications systems and high-assurance systems engineering. Dr. Bastani was the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (IEEE-TKDE). He is currently an emeritus EIC of IEEE-TKDE and is on the editorial board of the International Journal of Artificial Intelligence Tools, the International Journal of Knowledge and Information Systems and the Springer-Verlag series on Knowledge and Information Management. He was the program cochair of the 1997 IEEE Symposium on Reliable Distributed Systems, 1998 IEEE International Symposium on Software Reliability Engineering, 1999 IEEE Knowledge and Data Engineering Workshop, 1999 International Symposium on Autonomous Decentralised Systems, and the program chair of the 1995 IEEE International Conference on Tools with Artificial Intelligence. He has been on the program and steering committees of several conferences and workshops and on the editorial boards of the IEEE Transactions on Software Engineering, IEEE Transactions on Knowledge and Data Engineering and the Oxford University Press High Integrity Systems Journal. I-Ling Yen received her B.S. degree from Tsing-Hua University, Taiwan, and her M.S. and Ph.D. degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at University of Texas at Dallas. Dr. Yen's research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce and self-stabilising systems. She has published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Cochair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She has also served as a guest editor for a theme issue of IEEE Computer devoted to high-assurance systems.  相似文献   

20.

In this paper, an optimization process using MATLAB-SAP2000 Open Application Programming Interface (OAPI) is presented for optimum design of space frames with semi-rigid connections. A specified list including W-profiles taken from American Institute of Steel Construction (AISC) is used in the selection of suitable sections. The stress constraints as indicated in load and resistance factor design of AISC, lateral displacement constraints being the top- and inter-storey drift and geometric constraints are considered in the optimization process. Genetic algorithm method based on biological principles and harmony search algorithm method based on the processes of musical harmony are used for optimum designs. Two different space frames are solved for the cases of rigid and semi-rigid connections, separately. A computer program is coded in MATLAB for the purpose interacting with SAP2000 OAPI. Results obtained from the analyses show that type of semi-rigid connections plays a crucial role in the optimization of steel space frames and increases the optimum weight.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号