首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用碳酸锂和电解二氧化锰为原料,通过高温合成法研究了不同合成条件对反应产物LiMn2O4结构,性能的影响,并对LiMn2O4中Li离了非化学计量本比做了研究。结果表明,合成前研磨时间越长,所需合成的时间越短,合成最佳温度为750℃;随着锂离子量n的增另,LinMn2O4的晶格常数减小,1≤n≤1.1时合成产物结构最完整 、  相似文献   

2.
3.
空气中合成锂离子电池正极材料LiNi1-xTixO2   总被引:1,自引:0,他引:1  
以N i(OH)2、TiO2和LiOH.H2O为原料,采用固相反应法在空气中合成了LiN i1-xTixO2(x=0.025、0.050、0.100),用XRD研究了合成材料的物相和结构,用SEM研究了合成材料的形貌,用电池性能测试仪研究了合成材料的电化学性能.结果表明,原料中的n(Ti)/n(N i Ti)值对合成材料的结构和电化学性能影响很大.少量的钛可以进入LiN iO2的晶格形成LiN i1-xTixO2固溶体,而钛含量过大则会出现杂相.n(Ti)/n(N i Ti)值为0.050的样品结构有序度最高,充放电容量最大.  相似文献   

4.
Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.  相似文献   

5.
A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles.  相似文献   

6.
Binary carbon mixtures, carbon black ECP 600JD(ECP) combined with vapor grown carbon fiber(VGCF) or carbon nanotube(CNT), or graphene(Gr) in different mass ratios, are investigated as the conductive additives for the cathode material polyoxomolybadate Na_3[AlMo_6O_(24)H_6](NAM). Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy show that the surfaces of NAM particles are covered homogeneously with the binary conductive additive mixtures except the combination of ECP and CNT. The optimum combination is the mixture of ECP and VGCF, which shows higher discharge capacity than the combinations of ECP and CNT or Gr. Initial discharge capacities of 364, 339, and 291 m A·h/g are obtained by the combination of ECP and VGCF in the mass ratios of 2:1, 1:1, and 1:2, respectively. The results of electrochemical impedance spectra and 4-pin probe measurements demonstrate that the combination of ECP and VGCF exhibits the highest electrical conductivity for the electrode.  相似文献   

7.
导电剂使电池有良好的倍率放电性能,是锂离子电池不可或缺的关键材料之一,研究以常规导电炭黑做导电基底,探究添加导电石墨、碳纳米管和活性碳对LMO电池性能的影响.结果表明:在常规导电基底中加入50%的导电石墨,33.3%的碳纳米管,16.7%的活性炭的复合导电剂比常规导电剂组的实际比容量高出12 mAh/g;碳纳米管对实际比容量指标的影响最大,其次是活性炭,再次是导电石墨;循环次数在30次时,加入复合导电剂的电池容量保持率在90%以上,而加入常规导电剂的电池容量保持率下降到71%,不加任何导电剂的电池容量保持率只有55%.  相似文献   

8.
LiNi0.45Co0.10Mn0.45O2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 °C in air. The structures and characteristics of LiNi0.45Co0.10Mn0.45O2, LiCoO2 and LiMn2O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.45Co0.10Mn0.45O2 has a layered structure with hexagonal lattice. The commercial LiCoO2 has sphere-like appearance and smooth surfaces, while the LiMn2O4 and LiNi0.45Co0.10Mn0.45O2 consist of cornered and uneven particles. LiNi0.45Co0.10Mn0.45O2 has a large discharge capacity of 140.9 mA · h/g in practical lithium ion battery, which is 33.4% and 2.8% above that of LiMn2O4 and LiCoO2, respectively. LiCoO2 and LiMn2O4 have higher discharge voltage and better rate-capability than LiNi0.45Co0.10Mn0.45O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3% at the 250th cycle. Batteries with LiMn2O4 or LiNi0.45Co0.10Mn0.45O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes. Foundation item: Project(50302016) supported by the National Natural Science Foundation of China; Project(2005037698) supported by the Postdoctoral Science Foundation of China  相似文献   

9.
为研究pH值对掺锌氢氧化镍电化学性能的影响,采用沉淀转化法在不同pH下制备出掺杂Zn的纳米Ni(OH)2. 利用XRD和TEM对材料的结构和微观形貌进行分析,利用循环伏安技术和恒流充放电技术对材料的电化学性能进行研究. 结果表明,pH=10时制备的材料是α型纳米Ni(OH)2,随着pH的增大,材料逐渐变成α-Ni(OH)2和β-Ni(OH)2的混合物,且材料的团聚逐渐严重. pH的变化对材料的电化学性能影响明显. 随着pH的增加,材料的质子扩散系数增大;与pH=10时制备的材料相比,pH=12时制备的材料02C和3C放电比容量分别提高了20%和27%.  相似文献   

10.
Olivine LiFePO4/C composite cathode materials were synthesized by a solid state method in N2 + 5vo1% H2 atmosphere.The effects of different iron sources,including Fe(OH)3 and FeC2O4·2H2O,on the performance of as-synthesized cathode materials were investigated and the causes were also analyzed.The crystal structure,the morphology,and the electrochemical performance of the prepared samples were characterized by X-ray diffractometry (XRD),scanning electron microscopy (SEM),laser particle-size distribution measurement,and other electrochemical techniques.The results demonstrate that the LiFePO4/C materials obtained from Fe(OH)3 at 800℃ and FeCeO4·2H2O at 700℃ have the similar electrochemical performances.The initial discharge capacities of LiFePO4/C synthesized from Fe(OH)3 and FeC2O4·2H2O are 134.5 mAh·g-1 and 137.4 mAh.g-1 at the C/5 rate,respectively.However,the tap density of the LiFePO4/C materials obtained from Fe(OH)3 are higher,which is significant for the improvement of the capacity of the battery.  相似文献   

11.
通过共沉淀法制备了前驱体Ni1/3Co1/3-xMn1/3(OH)2,然后与LiOH·H2O、不同金属氧化物(MgO、ZrO2)分别混合制备锂离子电池正极材料LiNi1/3Co1/3-xMn1/3MxO2(M=Mg,Zr).通过X射线衍射(XRD)、扫描电镜(SEM)、高精度电池测试系统、交流阻抗对材料结构和电化学性能进行了表征。实验结果表明,包覆MgO后,材料的结构发生变化,而包覆ZrO2没有改变正极材料的结构。与无包覆的正极材料相比较,包覆ZrO2材料的首次放电量为119.07 mAhg-1,20次循环后容量保持率为92.64%,放电量仍达到110.31 mAhg-1。  相似文献   

12.
Olivine LiFePO4/C composite cathode materials were synthesized by a solid state method in N2 + 5vol% H2 atmosphere. The effects of different iron sources, including Fe(OH)3 and FeC2O4·2H2O, on the performance of as-synthesized cathode materials were investigated and the causes were also analyzed. The crystal structure, the morphology, and the electrochemical performance of the prepared samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), laser particle-size distribution measurement, and other electrochemical techniques. The results demonstrate that the LiFePO4/C materials obtained from Fe(OH)3 at 800°C and FeC2O4·2H2O at 700°C have the similar electrochemical performances. The initial discharge capacities of LiFePO4/C synthesized from Fe(OH)3 and FeC2O4·2H2O are 134.5 mAh·g−1 and 137.4 mAh·g−1 at the C/5 rate, respectively. However, the tap density of the LiFePO4/C materials obtained from Fe(OH)3 are higher, which is significant for the improvement of the capacity of the battery.  相似文献   

13.
The spinel LiMn2O4 used as cathode materials for lithium-ion batteries was synthesized by mechano-chemistry fluid activation process, and modified by doping rare-earth Sm. Thesting of X-ray diffraction, cyclic voltammograms, charge-discharge and SEM was carried out for LiMn2O4 cathode materials and the modified materials. The results show that the cathode materials doped rare earth Li x Mn2−y Sm z O4 (0.95⩽x⩽1.2, 0⩽y⩽0.3, 0⩽z⩽0.2) exhibit standard spinel structure, high reversibility of electrochemistry and excellent properties of charge-discharge. In EC: DMC(1 : 1)+1 mol/L LiPF6 electrolyte with discharge capacity more than 130 mA · h/g, and its capacity is deteriorated less than 15% after 300 cycles at room temperature and less than 20% after 200 cycles at 55°C. At the same time, Crystal Field Theory was applied to explain the function and mechanism of doped rare earth element. Foundation item: Project (02JJY2081) supported by the Natural Science Foundation of Hunan Province  相似文献   

14.
Spinel LiMn2O4 microspheres and hollow microspheres with adjustable wall thickness have been prepared using controllable oxidation of MnCO3 microspheres precursors and following solid reactions with lithium salts. Scanning electron microscopy (SEM) investigations demonstrate that the microsphere morphology and hollow structure of precursors are inherited. The effect of hollow structure properties of as-prepared LiMn2O4 on their performance as cathode materials for lithium-ion batteries has been studied. Electrochemical performance tests show that LiMn2O4 hollow microspheres with small wall thickness exhibit both superior rate capability and better cycle performance than LiMn2O4 solid microspheres and LiMn2O4 hollow microspheres with thick wall. The LiMn2O4 hollow microspheres with thin wall have discharge capacity of 132.7 mA·h·g-1 at C/10 (14.8 mA·g-1) in the first cycle, 94.1% capacity retention at C/10 after 40 cycles and discharge capacity of 116.5 mAh·g-1 at a high rate of 5C. The apparent lithium-ion diffusion coefficient (D app) of as-prepared LiMn2O4 determined by capacity intermittent titration technique (CITT) varies from 10-11 to 10-8.5 cm2·s-1 showing a regular “W” shape curve plotted with test voltages. The Dapp of LiMn2O4 hollow microspheres with thin wall has the largest value among all the prepared samples. Both the superior rate capability and cycle stability of LiMn2O4 hollow microspheres with thin wall can be ascribed to the facile ion diffusion in the hollow structures and the robust of hollow structures during repeated cycling.  相似文献   

15.
1 INTRODUCTIONInrecent years ,therehavebeenincreasingeffortstoimprovetheHall Heroult processintheprimaryaluminiumindustry[1 ] .InordertoovercometheshortagesofHall Heroultprocess ,suchashighconsumptionofelectricalpower ,highconsumptionofcarbonanodeandserious pollutionduetocarbonanodemanufactureandconsumptionetc ,anoveltypeofaluminareducedcellsbasedoninertanodeandwettablecathodesystemwasdevelopedtoreplaceconventionalHall Heroultprocess[2 ,3 ] .Titaniumdiboride(TiB2 )appearstobethebestca…  相似文献   

16.
TiB2/C cathode composites with various contents of TiB2 were prepared and their characterizations were observed and compared. The expansion of samples due to sodium and bath penetration was tested with a modified laboratory Rapoport apparatus and the appearances of the cut sections of specimens after electrolysis were studied.The results show that the mass of TiB2/C cathode composites with mass fraction of TiB2 less than 70% appreciably increases, but that of the composites with mass fraction of TiB2 more than 70% decreases slightly after being baked.The resistance to sodium and bath penetration of TiB2/C cathode composites increases with the increase of TiB2 content, especially in the composites with high TiB2 content. TiB2/C cathode composites have high resistance to the penetration of sodium and bath as well as good wettability by molten aluminum, and keep integrality and have little change of appearance after electrolysis, which indicates that TiB2/C cathode composites can be used as inert wettable cathode for aluminum electrolysis.  相似文献   

17.
二维纳米材料由于其结构和性能的独特性受到广泛的关注,各类二维纳米材料合成方法和表面改性的研究也得到了快速发展,在光催化性能提升和能源环境领域等方面发挥着重要作用。本文通过在复合物GO/WS2/Mg-ZnO(rGOWMZ)中添加直接带隙半导体In2Se3纳米片,合成rGOWMZ+In2Se3复合材料。并研究其光催化性能,发现性能得到了明显的改善,其中In2Se3纳米片质量分数为0.5%经过600℃热处理的复合物,在自然光照射下对罗丹明B的降解率为99.6%。本报道中In2Se3纳米片是通过液相超声剥离法制备的,大小为100 nm,厚度约为5层。并采用透射电子显微镜、原子力显微镜、X射线衍射仪、扫描电子显微镜对复合材料进行了物相分析。发现rGOWMZ+In2Se3复合材料对有机颜料罗丹明B具有优异的光催化性能,此复合材料将在光催化领域中具有巨大的应用潜力。  相似文献   

18.
Microstructures such as micro-strain, crystallite as well as stacking faults can result in broadening of X-ray diffraction lines. Based on least square principle, new computation method and programs, which can separate the two-fold broadening effect caused by crystallite/stacking faults and which can separate the three-fold broadening effect caused by crystallite/residual stress/stacking faults, have been proposed. As a result, micro-strain and crystallite sizes as well as stacking fault probability can be calculated respectively and investigated in detail. Then the microstructures of β-Ni(OH)2 are investigated by means of these methods. The main results are as follows: 1) The shape and size of crystallite as well as stacking fault probability of raw β-Ni(OH)2 are dependent on its preparation technique. 2) Activation changes the microstructure of β-Ni(OH)2. It transforms the crystallite shape from short-fat cylinder into polyhedrons or nearly equiaxial grains. Activation also alters the residual strain states and stacking fault probability. 3) After charge-discharge and cycle-lifetime testing, the crystallites of β-Ni(OH)2 are fined further and its residual strain and fault probability were alternated. The extent of these effects are dependent on circulating conditions. 4) Calcium additive in β-Ni(OH)2 restrains grain fining process and turns twin fault into deformation fault. 5) Comprehensive analysis reveals that micro structural parameters of β-Ni(OH)2 are correlated with some performance of Ni-MH battery.  相似文献   

19.
环境风对直接空冷凝汽器的换热性能有很大的影响.针对某电厂空冷岛换热受环境风影响的问题,提出了3种加装防风网的方案来改善环境风的影响.用Fluent软件建立了数学模型,从风机的进气量和风机入口压强两方面对比分析了不同方案的优劣.结果表明:相比于无措施的情况,方案1在风速为3m/s时效果较好,能够提高进气量4%;方案2在风速为9m/s时效果较好,能够提高进气量25%;方案3能够使得风机入口压强的分布更加的均匀,有利于机组的安全运行.  相似文献   

20.
采用等体积浸渍法分别制备了不同条件下的MgO-Al2O3复合载体和Ni/MgO-Al2O3催化剂,并考察了Ni/MgO-Al2O3用于环戊二烯(CPD)选择加氢制备环戊烯(CPE)的催化性能.采用X射线衍射(XRD)、BET等技术对催化剂进行了表征,考察了焙烧温度对Ni/MgO-Al2O3催化剂结构的影响.研究结果表明,复合载体与催化剂焙烧温度分别为700℃、450℃,NiO负载量为15%时,制备的催化剂比表面积和孔径大小适宜,催化剂的催化性能最好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号