首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究不同含量的上贝氏体对ER8车轮钢裂纹扩展行为的影响。利用激光共聚焦显微镜(LSCM)和扫描电镜(SEM)对ER8车轮钢的显微组织和裂纹扩展路径进行了研究。实验结果表明:ER8车轮钢中的组织除了有铁素体和珠光体,还存在上贝氏体;裂纹穿过上贝氏体和珠光体扩展,最终停止在珠光体区域;与珠光体组织相比,裂纹在上贝氏体中的扩展路径更曲折。利用扫描电镜(SEM)对ER8车轮钢的裂纹扩展变形进行原位观察。实验结果表明:含有80%上贝氏体的ER8车轮钢拉伸时,组织变形过程主要以铁素体和上贝氏体为主,裂纹在上贝氏体和珠光体中连续扩展,伴随着珠光体的变形;而含有50%上贝氏体的ER8车轮钢拉伸时,组织变形过程主要以铁素体和珠光体为主,并且上贝氏体对铁素体和珠光体的变形起到阻碍作用。上贝氏体能够有效地阻止裂纹扩展,在偏转裂纹路径和延缓裂纹扩展方面起着重要作用;并且对铁素体和珠光体的变形起到阻碍作用。   相似文献   

2.
铬对高速车轮钢显微组织和力学性能的影响   总被引:2,自引:0,他引:2  
研究了微量铬对高速车轮钢组织和性能的影响.实验结果显示,加入微量的铬,可以细化珠光体的片层间距,在保持韧塑性基本不变的情况下,显著增加材料的强度和硬度,从而提高车轮钢的耐磨性和抗剥离性能.  相似文献   

3.
Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4?pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873?K (600?°C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243?K (?C30?°C), which could be further reduced by purification.  相似文献   

4.
固溶处理对00Cr27Ni7Mo5N不锈钢的组织及力学性能的影响   总被引:1,自引:0,他引:1  
黄盛  宋志刚  郑文杰  尹建成 《钢铁》2011,46(12):71-75
 研究了不同固溶处理温度对特超级双相不锈钢00Cr27Ni7Mo5N组织及力学性能的影响。采用光镜、扫描电镜、能谱仪、显微硬度、冲击和拉伸测试等手段研究σ相的析出规律及其对力学性能的影响。运用Thermo-Calc热力学软件计算00Cr27Ni7Mo5N相含量随温度的变化,并与测试结果进行对比分析。研究结果表明,当固溶温度在800~1050℃之间,00Cr27Ni7Mo5N有大量金属间化合物σ相析出,导致钢的强度和硬度增加,塑韧性显著下降。当固溶温度在1070~1200℃时,钢中σ相溶解,钢的塑韧性提高,硬度下降。1100℃固溶处理时,00Cr27Ni7Mo5N具有最佳的综合力学性能。  相似文献   

5.
焊接热影响区(HAZ)的微观组织很大程度上决定了钢材焊接处的力学性能。为了掌握含钛微合金钢Q345B在不同焊接线能量下热影响区的微观组织及性能演变规律,采用Gleeble 3500热模拟试验机,对含钛微合金钢Q345B焊接过程中热影响区的组织演变进行模拟试验研究,分析了冷却速率对热影响区的微观组织及冲击韧性的影响。结果表明,大线能量焊接低冷速下热影响区组织以粒状贝氏体为主,t8/5为120 s时,析出针状铁素体,针状铁素体的出现有利于焊接热影响区冲击韧性的提升。  相似文献   

6.
吴庆辉  杨忠民  杨超飞  陈颖  王慧敏 《钢铁》2012,47(12):59-63
 通过在Gleeble-1500热模拟试验机上对珠光体钢轨的轧后热处理模拟试验,研究了热轧后不同加热温度进行奥氏体化后,同一等温温度下得到的珠光体轨钢的显微组织和力学性能。试验结果表明:与热轧态相比,热处理后的钢轨钢在保持硬度稳定的基础上,冲击韧性随着奥氏体化温度降低得到明显改善。观察轧后热处理钢轨的组织,从原始奥氏体晶粒尺寸、相变后珠光体组织中珠光体域的尺寸和珠光体片层间距大小等方面,对轧后热处理温度对热轧钢轨性能的影响规律和原因进行了分析,阐明了轧后热处理温度对于控制珠光体钢轨的组织和性能的影响作用。  相似文献   

7.
An investigation was carried out to study the microstructure and mechanical properties of isothermally transformed AISI E 52100 steel. Heal treatments consisting of single and two cycle austenitization followed by isothermal holding resulted in duplex structures of martensite and bainite. In addition, high temperature austenitization led to large amounts of retained austenite at room temperature. Conventional oil quenching treatments were also performed for purposes of comparison. It was found that isothermal holding aboveM s after single cycle austenitization resulted in a microstructure which had strength and toughness properties equivalent to quenched and tempered 52100. The two cycle austenitization treatment followed by isothermal holding led to a doubling of the fracture toughness at equivalent hardness and ultimate tensile strength levels relative to the properties of conventional quenched and tempered 52100 steel. The mechanical stability of retained austenite, present after two cycle austenitization, was examined. Although it was found that the presence of unstable retained austenite was associated with the best combination of strength and toughness, it cannot be unequivocally stated that the retained austenite influenced the mechanical properties. R. M. HORN, formerly with University of California, Berkeley  相似文献   

8.
为开发强度级别为685MPa的高强钢板的控轧控冷工艺,研究了终轧温度,未再结晶区累积压下量,终冷温度,冷却速度等工艺参数对钢的显微组织和力学性能的影响。实验结果表明,在控轧控冷条件下,钢的室温显微组织由铁素体和贝氏体组成,贝氏体主要以粒状贝氏体为主,此外,晶粒细化是提高钢的强度和韧性的最有效的手段。  相似文献   

9.
Nitride-strengthened, reduced activation, martensitic steel is anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Two nitride-strengthened, reduced activation martensitic steels with different carbon contents were prepared to investigate the microstructure and mechanical property changes with decreasing carbon content. It has been found that both steels had the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and displayed extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 pct in wt pct), the steel with high carbon content (0.012 pct in wt pct) had not only the higher strength but also the higher impact toughness and grain coarsening temperature, which was related to the carbon content. On the one hand, carbon reduction led to Ta-rich inclusions; on the other hand, the grain grew larger when normalized at high temperature because of the absence of Ta carbonitrides, which would decrease impact toughness. The complicated Al2O3 inclusions in the two steels have been revealed to be responsible for the initiated cleavage fracture by acting as the critical cracks.  相似文献   

10.
A simple two-step thermal processing technique was devised to impart a microduplex structure in a high strength 250 grade commercial maraging steel. A martensite grain size of approximately 1 μm was obtained with interspersed islands of retained austenite whose volume fraction and mechanical stability could be controlled by varying the thermal processing conditions. The microstructure and mechanical properties of the microduplex structure were compared to those of the alloy in the maraged, martensitic condition. Due to the presence of the austenite phase, the microduplex structure showed a much smaller temperature and strain rate dependence of deformation than the martensitic structure. A remarkable increase in uniform elongation was observed below theM d temperature of retained austenite. The microduplex structure did not show any significant advantage in fracture toughness over the martensitic structure when compared at similar strength levels. By suitably adjusting austenitic stability a deformation-induced phase transformation (TRIP) of the retained austenite in the microduplex structure could be made to occur; however, the transformation did not lead to any evident increase in toughness. The micro-duplex structure exhibited a slight improvement in fracture toughness at high strain rate in contrast to the martensitic structure in which the rate effect significantly reduced the toughness.  相似文献   

11.
《粉末冶金学》2013,56(3):232-238
Abstract

The influence of microstructure on the mechanical properties of starch consolidated super solidus liquid phase sintered AISI type M3/2 high speed steel powder has been evaluated. Hardness measurements, Rockwell C indentation and scratch testing were used to evaluate the mechanical properties and light optical microscopy and scanning electron microscopy were used for post-test characterisation. The results show that it is possible to starch consolidate and sinter large particle size high speed steel powder to obtain microstructures with high mechanical strength. However, the results show a strong correlation between the as sintered microstructure and the resulting mechanical properties and illuminate the importance of having a dense and isotropic microstructure in order to meet engineering requirements in demanding applications. Consequently, the failure mechanisms observed during indentation and scratch testing can be related to residual pores, present in the low temperature sintered samples, and a coarse microstructure with eutectic carbides, present in the high temperature sintered samples.  相似文献   

12.
《粉末冶金学》2013,56(2):120-126
Abstract

This paper describes the microstructural and mechanical properties of injection moulded 17-4 PH stainless steel gas and water atomised powder. Gas and water atomised stainless steel powders were injection moulded with wax based binder. The critical powder loading for injection moulding were 62·5 and 55 vol.-% for gas and water atomised powders respectively. Binder debinding was performed using solvent and thermal method. After dedinding the samples were sintered at different temperatures for 1 h in pure H2. Metallographic studies were conducted to determine to extend densification and the corresponding microstructural changes. The results show that gas atomised powder could be sintered to a maximum (98·7%) of theoretical density, and water atomised powder could be sintered to a maximum (97·08%) of theoretical density. Maximum tensile strength was obtained for gas atomised powder sintered at 1350°C. The tensile strength of the water atomised powder sintered at the same temperature was lower owing to higher porosity. Finally, mechanical tests show that the water atomised powder has lower mechanical properties than gas atomised powder.  相似文献   

13.

Macrosegregation refers to the chemical segregation, which occurs quite commonly in the large forgings such as nuclear reactor pressure vessel. This work assesses the effect of macrosegregation and homogenization treatment on the mechanical properties of a pressure-vessel steel (SA508 Gr.3). It was found that the primary reason for the inhomogeneity of the microstructure was the segregation of Mn, Mo, and Ni. Martensite, and coarse upper bainite with M-A (martensite-austenite) islands have been obtained, respectively, in the positive and negative segregation zone during a simulated quenching process. During tempering, the carbon-rich M-A islands decomposed into a mixture of ferrite and numerous carbides which deteriorated the toughness of the material. The segregation has been substantially minimized by a homogenizing treatment. The results indicate that the material homogenized has a higher impact toughness than the material with segregation, due to the reduction in M-A island in the negative segregation zone. It can be concluded that the microstructure and mechanical properties have been improved remarkably by means of homogenization treatment.

  相似文献   

14.
A simple two-step thermal processing technique was devised to impart a microduplex structure in a high strength 250 grade commercial maraging steel. A martensite grain size of approximately 1μm was obtained with interspersed islands of retained austenite whose volume fraction and mechanical stability could be controlled by varying the thermal processing conditions. The microstructure and mechanical properties of the microduplex structure were compared to those of the alloy in the maraged, martensitic condition. Due to the presence of the austenite phase, the microduplex structure showed a much smaller temperature and strain rate dependence of deformation than the martensitic structure. A remarkable increase in uniform elongation was observed below theM d temperature of retained austenite. The microduplex structure did not show any significant advantage in fracture toughness over the martensitic structure when compared at similar strength levels. By suitably adjusting austenitic stability a deformation-induced phase transformation (TRIP) of the retained austenite in the microduplex structure could be made to occur; however, the transformation did not lead to any evident increase in toughness. The microduplex structure exhibited a slight improvement in fracture toughness at high strain rate in contrast to the martensitic structure in which the rate effect significantly reduced the toughness.  相似文献   

15.
对采用TMCP工艺轧制的800 MPa低碳贝氏体钢进行不同温度的回火试验,分析了不同回火温度对800MPa级低碳贝氏体钢的组织及性能的影响。结果表明:回火过程是板条贝氏体的熟化过程,随着回火温度的升高,强度降低,而冲击韧性得到改善。  相似文献   

16.
随着列车时速不断提高,制动盘承受的热负荷不断增大,这对制动盘材料提出了更高的要求.为了提高制动盘钢的机械性能及耐热疲劳性,钒元素被添加到制动盘钢中.本文研究了不同淬火温度时V含量对Cr-Mo-V系制动盘钢组织及力学性能的影响,并通过Thermo-Calc热力学软件、碳复型、透射电镜、能谱分析等方法对不同V含量时析出相的演变规律进行研究.结果表明,增加钒含量使高温析出的V(C,N)含量增加,细化奥氏体晶粒和回火马氏体组织.淬-回火态析出相主要为V(C,N)、(Mo,V)C、M7C3和M23C6.随钒含量增加,大尺寸M23C6和M7C3的析出被抑制,对韧性损害降低;小尺寸(Mo,V)C含量增多,析出强化效果增强.淬火温度为880~900℃时,增加钒含量能细化马氏体和减少大尺寸碳化物,弥补了析出强化对韧性的损害,故冲击功变化不大.淬火温度为920~940℃时,提高钒含量促使(Mo,V)C量急剧增加,冲击功快速下降.实验钢淬火温度不应超过900℃.   相似文献   

17.
Aim at the problems that the heat treatment process of high strength and high toughness Cr- Mo- V bulb- flat steel was difficulty and the granular bainite was not fully decomposed, the influence of different tempering temperatures and tempering holding times on the microstructure and mechanical properties of high strength and high toughness Cr- Mo- V bulb- flat steel were studied by optical microscopy, SEM, TEM and mechanical property tests. The results show that the metastable granular bainite in the steel can be recovered and transformed to quasi- polygonal ferrite by tempering at temperatures above 600?? and holding for more than 2h. The large- sized and long- shaped M- A islands in the original microstructure are decomposed and transformed into granular M- A islands. With the increase of the tempering temperature, the granular bainite in the steel can be further decomposed to make the particles finer and more dispersed, which significantly improves the low- temperature toughness of the steel and obtains a good comprehensive performance. For this steel, the best heat treatment process to get good match of strength and toughness is tempering at 660-680?? and holding for 3. 0-3. 5h.  相似文献   

18.
通过金相显微镜、扫描电镜、力学性能测试,研究了830~930℃淬火+650 ℃回火对690 MPa高强钢显微组织和力学性能的影响.结果表明:实验钢经两相区830 ℃淬火+650 ℃回火后的组织为板条状铁素体和回火索氏体,其屈服强度较低为679 MPa.淬火温度在完全奥氏体化相区为890~930℃时,随着淬火温度升高,材...  相似文献   

19.
The effects of solution and aging treatment on microstructure and mechanical properties of 10Ni2Cr2MnCuMoVAl plastic mold steel were experimentally studied. The results show that the dominant microstructure of 10Ni2Cr2MnCuMoVAl steel after solid solution treatment is lath martensite, and higher solution temperature results to larger width of martensite, while the highest value of hardness could be obtained after solution treatment at 890??. After aging, the microstructure consists of lath martensite, granular bainite and carbides. For steel aged at 460-520??, the strength of the material gradually increased with higher aging temperature, while the toughness decreased gradually. When the temperature exceeded 520??, higher temperature led to decreased hardness and increased toughness. Compared the mechanical properties of steel aged at 540?? for different time, the test steel reached the peak of mechanical properties at 8h. By comparing the mechanical properties of the test steels after different aging treatments, the optimized heat treatment process of 10Ni2Cr2MnCuMoVAl steel is solution treatment at 880?? for 2h with air cooling and tempering temperature at 540?? for 4h with air cooling.  相似文献   

20.
山东寿光巨能特钢采用电炉—精炼炉—真空脱气—连铸的工艺流程试生产高韧性螺栓用钢42CrMo(Ni),通过Ni元素的加入大幅度提高钢材的低温韧性,通过Cr—Mo—Ni合金化细化晶粒及控制轧制工艺使42Cr Mo(Ni)具有良好的综合机械性能。经生产实践及检验发现,钢材的晶粒细小,组织均匀,-100℃的低温冲击功Akv≥27 J,比42Cr Mo(B7)平均提高5 J以上,机械性能稳定,满足用户的使用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号