首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为确定最优的极薄带轧制工艺,本研究深入分析了强剪切对轧制单层晶极薄带微观变形行为和晶体转动演化的影响。采用基于位错滑移机制的晶体塑性有限元模型进行模拟,最大异速比达到1.5。建立了晶粒取向随机分布的单层晶极薄带轧制模型,以探究少晶组织的晶界作用特性。结果表明:强剪切导致单层晶极薄带轧制微观变形和晶体转动表现出显著的局部化。强剪切促进了晶粒的剪切变形,使得晶界的协调变形能力增强。在轧制区施加强剪切变形,可使已启动滑移得到扩展,主滑移带缩窄分散形成新的次滑移带,滑移更加集中和各向异性。变形后晶粒取向主要绕箔材宽度方向发生转动和分散,强剪切使转动角度增大和分散点更加集中稳定。模拟表明强剪切严重影响单层晶极薄带轧制变形的各向异性,进而导致择优取向、滑移局部化以及非均匀应力-应变分布。  相似文献   

2.
采用大变形量的连续变断面循环挤压工艺对铸态AZ31镁合金进行不同道次的挤压变形,分析了其在变形到断裂过程中的受力情况和微观组织变化。研究表明:随着变形次数的增加,铸态AZ31镁合金晶粒不断被细化,10道次变形后,晶体内的不均匀变形被消除,粗大的晶粒全部变为细小的等轴晶,晶界上的第二相和杂质也均匀地分布在晶粒间;变形过程中发生了动态再结晶,原始粗大晶粒在形成细小等轴晶的同时仍能保持原有晶体位置的遗传性;变形过程中主要以孪晶为主,锥形裂纹末端为沿晶和穿晶结合型断裂,侧面为单一型穿晶断裂,并且裂纹两边显微组织存在较大差异性。  相似文献   

3.
在室温条件下,对AZ31镁合金挤压棒材进行循环扭转变形,测试了扭转变形过程的力学性能以及变形后的微观组织和织构特征,并对扭转变形对镁合金棒材的力学性能影响进行了分析。结果表明:镁合金棒材在循环扭转过程中得到了严格对称的应力-应变滞回线,并且随着循环周期的增加,由于加工硬化和内部微裂纹扩展的共同影响,应力-应变滞回线上的应力峰值呈现先增加后减小的特征。在最大扭转角分别为60°和90°条件下,应力峰值出现在第四周期。镁合金棒材扭转变形后的晶粒中出现大量的拉伸孪晶带,孪晶启动使晶粒的 C 轴转向棒材轴线方向。镁合金棒材扭转变形后的力学性能测试结果显示,循环扭转变形明显提高了镁合金棒材压缩变形的屈服强度,其值由扭转前的约100MPa最大提高至约200MPa。  相似文献   

4.
采用 TEM 衍衬试验研究了 TiAl+Mn 合金中层错带和变形孪晶的特征。结果表明:所观察到的层错带是一组在平行(111)面上的重叠层错,提出这种重叠层错是由柏氏失量■=1/6[112]的不全位错扫过相继平行(111)面时形成的。分析结果还表明,按上述机制所形成的重叠层错的取向与观察到的变形孪晶一致。因此,重叠层错实际上是变形孪晶的胚胎。基于以上对层错带及变形孪晶形成过程的认识,本文进一步探讨了第三元素对 TiAl 基合金孪生变形及延性的影响。  相似文献   

5.
层错能对Fe-Mn-C系TRIP/TWIP钢变形机制影响   总被引:1,自引:1,他引:0  
对三种不同层错能(SFE)Fe-Mn-C系TWIP钢的变形机制进行了研究.结果表明:在淬火态下,TWIP钢组织为全奥氏体,奥氏体晶粒内存在少量退火孪晶.TWIP钢的层错能随着C、Mn含量的增加而增加.层错能为7 mJ/m2时,变形后出现大量ε马氏体,且随着应变量的增大,ε马氏体峰增强,表现为单一的TRIP效应;层错能为12 mJ/m2时,应变诱导γ→ε→α或γ→α的转变及形成少量形变孪晶,表现为TRIP/TWIP效应;层错能为18 mJ/m2时,变形后形成大量形变孪晶,表现为单一的TWIP效应,抗拉强度和延伸率分别达到851 MPa及49%.随着层错能增加,TWIP钢的断裂机制由沿晶断裂转变为以韧窝为主的塑性断裂.  相似文献   

6.
金属发生塑性变形时形成的剪切带在高应变状态下会被分割为孪晶-基体片层状组织,而纳米尺度的孪晶界能实现材料强塑性的高度匹配。因此,利用等通道转角挤压(ECAP)技术研究剪切带的形成与作用可为材料的强塑性匹配提供有效支持。通过对具有特殊晶界角度的连续柱状晶纯Cu进行1道次ECAP变形,研究变形过程中晶界的演变,分析变形过程中剪切带的形成机制及与晶界的交互作用,测试了不同晶界角度试样变形后的力学性能。结果表明:ECAP变形后,0°晶界发生弯折,内角处晶界顺时针转动50°,30°晶界顺时针转动5°,45°晶界弯曲并呈现出"汤匙"状,60°晶界中心发生弯曲,90°晶界未发生变形。试样变形过程具有多个受力区域,各区域应力状态不同,多种应力交替作用使变形过程中的应变分布极不均匀,从而导致宏观变形存在较大差异。拉伸实验结果表明,具有0°晶界的晶体抗拉强度最高,达到325 MPa,其次是具有45°晶界的晶体,达到295 MPa,而具有60°晶界的晶体抗拉强度最小,为230 MPa。晶体变形后晶粒内形成大量的剪切带,剪切带与晶界的交互作用使晶界发生弯曲。剪切带与晶粒取向及晶界夹角的不同是造成材料变形后抗拉强度产生较大差异的因素之一。  相似文献   

7.
在晶粒尺度采用晶体塑性有限元模拟极薄带材轧制成形过程,对优化和改进材料模型以及探究极薄带材塑性变形机制具有重要作用.箔材轧制成形性能主要依赖材料的微观结构(晶界、滑移系、取向).采用退火态的单层晶铜箔为原料,进行箔轧实验和晶体塑性有限元模拟.建立反映晶粒形貌、晶界和取向各向异性的单层晶铜箔晶体塑性有限元模型,分析极薄带轧制成形中单/多滑移系启动状态和应变局部化现象.为准确构建晶体塑性有限元模拟的初始晶粒结构,消除微观组织亚表面的影响,采用垂直晶界即在厚度方向上建立只有一层晶粒的铜箔晶粒模型.结果表明:晶粒各向异性影响单层晶铜箔的轧制变形机制;晶界处的变形和滑移系运动状态完全不同于晶粒其他位置;单层晶轧制变形的滑移状态表现出明显的各向异性,出现局部滑移带和应变局部化,随轧制变形量的增大,滑移差异显著增大;晶界两侧局部区域存在滑移和变形的显著差异,这为亚晶和微观裂纹源的形核提供了有利的位置.  相似文献   

8.
在室温下对铸态高纯粗晶铝进行一道次高应变率动态等径角挤压(D-ECAP)变形,利用电子背散射衍射技术(EBSD)研究挤压过程中所形成的孪晶。结果表明:利用D-ECAP能够在粗晶铝中同时制备出形变孪晶和退火孪晶,但两者在形态、Kernel平均取向差(KAM)以及与相邻晶粒的取向差三个方面存在较大差异。D-ECAP高应变率和大剪切变形使高层错能铝中形成了百微米级的形变孪晶,形变孪晶的形态为透镜状,后续变形使得孪晶界偏离∑3 60°〈111〉取向关系且KAM值主要集中于0.6°~1.8°。高应变率剪切变形下形成的大量层错和复杂的位错组态以及高形变储存能在变形温升的作用下促进了退火孪晶的形成。退火孪晶的形态较不规则,但孪晶界的取向关系更接近于∑3 60°〈111〉且KAM值主要集中于0.2°~0.5°。  相似文献   

9.
随极薄带厚度的进一步减薄,轧制极薄带变形由于轧件厚度/晶粒尺寸比值小的尺寸效应和变形程度导致各向异性与局部化已完全不同于轧制厚件时的变形特性。采用具有拉拔-压缩-剪切复合成形功能的微型异步轧机开展系列厚度铜极薄带的箔轧实验,结果表明复合成形轧制工艺和极薄带尺寸显著影响轧制力能参数与箔材质量。宏观有限元理论已不再适用出现这些新现象的极薄带轧制变形的建模。将嵌入初始晶粒形貌和取向等微观组织结构信息的介观晶体塑性有限元模型(CPFE)用于复合成形条件下铜极薄带轧制变形局部化的模拟与分析,指导箔轧工艺优化和提高箔材质量。晶粒层次的晶体塑性有限元模型,准确预测了单层晶铜极薄带轧制变形局部化的现象和趋势,模拟与实验的轧制力吻合较好,尤其是各向异性。随上下工作辊异速比的增大,箔材厚度方向剪切变形增强,变形带、滑移带形成且局部化趋势显著。晶粒变形局部化的差异,对轧制制备极薄带材的控形控性造成困难。  相似文献   

10.
王雷  奚运涛  王世清  高倩 《材料导报》2018,32(Z1):432-438
本研究通过等径通道挤压(ECAP)对孪晶诱导塑性变形钢(TWIP钢)在300℃下进行了晶粒细化,并运用金相显微镜、电子背散射衍射(EBSD)、透射电镜(TEM)观察了经不同道次挤压后TWIP钢的晶粒、孪晶形貌及位错组织。结果表明,在均匀化退火状态下,试样晶粒基本呈现等轴状态,通过测微尺测量晶粒尺寸,约为(90±30)μm。在1道次挤压后,晶粒沿剪切方向显著伸长,并有尺寸较小的新晶粒产生,许多形变孪晶在剪切带中产生。2道次挤压后新产生的细小晶粒增多,并开始产生许多微孪晶,孪晶易于在晶界处产生。经过4道次等径通道挤压,晶粒逐渐细化至超细晶状态,晶粒尺寸达到0.3~1μm,孪晶厚度随挤压道次的增多而不断减小,甚至达到几十纳米。在不同晶粒尺寸下,TWIP钢在高温ECAP过程中产生孪晶的机理不同。  相似文献   

11.
AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究   总被引:1,自引:0,他引:1  
利用电子背散射衍射(EBSD)技术,原位跟踪AZ31镁合金轧制板材室温下沿轧向拉伸时的晶粒取向变化。对变形过程的滑移系和孪晶启动机进行分析。结果表明:变形过程主要由〈a〉基面和柱面滑移系开动而实现,晶粒取向无明显变化,大量〈a〉位错滑移的产生,使得变形后小角度晶界增加明显。晶粒中拉伸孪晶是试样在拉伸变形过程中产生的,而非在试样拉伸后的卸载过程中产生。  相似文献   

12.
对于面心立方结构的纳米金属,晶粒尺寸对孪生厚度(孪生核)的影响虽已有研究,但仍有待深入。本论文以Cu-30%Zn合金为模型材料,通过高压扭转变形技术、等径角挤压连同轧制技术变形得到晶粒尺寸在5~500nm的样品。透射电子显微镜观察发现:变形孪晶的片层厚度随晶粒尺寸的减小而减小,当晶粒尺寸小于20nm以后,孪晶厚度为(111)晶面间距(层错);另外,层错存在于各个不同尺寸范围的晶粒内,表明层错不受晶粒尺寸影响。研究结果表明在低层错能超细晶材料中,孪生变形是通过从晶界连续发射不全位错(层错)形成的。  相似文献   

13.
进行变形速率可控的单向拉伸试验,研究了变形织构与滑移和孪生等协调变形机理对AZ31镁合金综合性能的影响。结果表明:在沿挤压方向拉伸过程中,变形织构使{0002}晶面Schmid因子较低,基面滑移难以开动,屈服强度高。在沿45°拉伸过程中,变形织构使柱面取向晶粒处于发生{0002}滑移的最佳位置,基面取向晶粒的棱柱面滑移也处于最佳位置,屈服强度低而延伸率高。沿横向拉伸的力学性能主要受孪晶影响,由于大量孪晶诱发裂纹,延伸率最低。试样在45°和横向拉伸时产生的大量拉伸孪晶,是出现{0002}双峰织构的诱因。  相似文献   

14.
采用扫描电镜对TWIP钢的拉伸过程进行了原位观察,研究结果表明:在TWIP钢的拉伸过程中,具有孪晶界的晶粒内部首先发生变形,并产生一定程度的加工硬化;随后其余部分晶粒发生转变,形成对变形有利的取向,从而变形得到扩展,最终得到非常大的无颈缩延伸.拉伸过程中,微裂纹首先在夹杂物和晶界处萌生,并在应力集中的作用下发生扩展连接,最终完成断裂过程.TWIP钢在变形过程中产生了大量的应变条痕,其大部分为滑移线,小部分为形变孪晶.由于孪晶诱导塑性效应,孪晶晶粒发生扭折并形成了台阶状结构,从而导致了试样表面的"褶皱"现象.  相似文献   

15.
姜丹  刘天模  胡伟辉 《材料导报》2007,21(Z2):372-374
研究了变形温度和变形量对AZ31镁合金组织性能的影响.结果表明:随着变形量的增加,孪晶数量减少,在400℃变形量为10%时,出现动态再结晶晶粒.随着温度升高,孪晶减少甚至消失,当温度达到350℃时,在晶界和孪晶界观察到细小的再结晶晶粒,温度继续升高,再结晶晶粒会出现长大现象.材料的抗压强度随着温度的升高先增加后减小.  相似文献   

16.
本文研究了不同冷拉变形量和退火处理对新型70Cu-1Sn黄铜显微组织和性能的影响。结果表明:在铜锌二元合金中加入少量Sn、Al、P、Ni合金元素构成了新型的70Cu-1Sn合金,合金元素以固溶体的形式存在于晶粒内部,合金为α单相组织。随着冷拉拔变形量增大,沿着冷拉拔方向晶粒的变形程度逐渐增大,当变形量达43%时出现片状纤维组织;衍射峰宽化程度逐渐增大,没有发生相变或者有序化转变。加工硬化过程中合金的硬度、抗拉强度、脱锌腐蚀深度和腐蚀电流密度快速增加,但其伸长率、腐蚀电位逐渐降低,导致合金耐腐蚀性逐渐变差。退火态的合金以等轴晶为主,晶粒内部有一定数量的退火孪晶,其脱锌腐蚀深度约为17μm,其脱锌腐蚀深度远小于加工率43%的合金的155μm,其腐蚀电位最高且电流密度最小。  相似文献   

17.
研究了最后一火锻造变形量对FeNi基合金微观组织和性能的影响.结果表明,变形量为10%时合金中出现孪晶,其数量随着变形量的增大而增多.随着最后一火锻造变形量的增大,室温拉伸强度因晶粒细化而提高;但是,变形量大于15%后,室温塑性因孪晶对晶内滑移的阻碍作用和晶界碳化物对晶界结合力的削弱而降低;变形量大于10%时高温强度和塑性下降,其原因是孪晶与晶界相交阻碍了晶界滑动,相交部分在外力作用下易产生应力集中导致裂纹萌生并沿晶界扩展.  相似文献   

18.
Inconel625合金的高温高速热变形行为   总被引:3,自引:0,他引:3  
对Inconel625合金在1000-1200℃,应变速率为10-80 s~(-1)条件下的热模拟压缩实验结果进行分析,修正了实验中由于高速变形产生的热效应引起的真应力-真应变曲线上流动应力的误差,通过回归分析建立了Inconel625合金高温高速下的本构模型.变形后的微观组织分析结果表明,提高变形速率是细化最终晶粒尺寸的重要途径,但过高的变形速率容易产生残余孪晶。在适当的温度(1050℃)与应变速率(50 s~(-1))下,合金具有均匀而细小的理想组织。  相似文献   

19.
利用相场方法研究了马氏体变体在循环应力作用下再取向和再分布的微观机制。模拟结果表明,随着外应力的增加,在孪晶界面会出现母相的形核和长大,以此实现变体间的转化,这是3种变体转化为2种变体的主要再取向机制;卸载后消失的变体在孪晶界面重新形核并长大以完成系统内微观组织的再分布。在Mn-Cu合金中这种机制是控制循环载荷下形状记忆效应产生的主要机制。  相似文献   

20.
对奥氏体不锈钢表面进行了爆炸强化、滚压强化和喷丸强化。爆炸强化时表面层内出现形变孪晶栅栏,位错线具有方向性、呈密布排列,局部山现ε马氏体、α马氏体和奥氏体超细晶粒的区域;滚压强化后表面层内也有就、孪晶栅栏出现,但位错以胞状结构的形式分布在奥氏体基体上;喷丸强化的表面层内孪晶栅栏十分致密,位错线仍以方向性排布,并无位错胞出现。表面层内组织结构出现差异,主要与变形速度和变形量有关,高速和较大的变形量可诱发α,ε马氏体转变和形成超细奥氏体晶粒,慢速变形时能促使位错胞的形成。本文还讨论了孪晶栅栏的形成方式及其内部构造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号