首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaporative condenser is an energy efficient and environmentally friendly air conditioning equipment. This paper proposed an air conditioning system using dual independent evaporative condenser and investigated the cooling performance. Many factors, such as evaporator water inlet temperature, compressor frequency, air dry-bulb temperature, air velocity and water spray rate, which influenced the cooling performances of air conditioning system with evaporative condenser have been investigated. The results indicated that cooling capacity and coefficient of performance (COP) increased significantly with the increasing of evaporator water inlet temperature (12–25 °C), the air velocity (2.05–3.97 m s−1) and the water spray rate (0.03–0.05 kg m−1 s). However, COP decreased with the increasing ambient air dry-bulb temperature (31.2–35.1 °C) and the compressor frequency (50–90 Hz). Furthermore, the heat transfer coefficient (K0) was 232–409 W m−2 K−1 in different air velocity and water spray rate.  相似文献   

2.
Use of a two-phase flow ejector as an expansion device in vapor compression refrigeration systems is one of the efficient ways to enhance its performance. The present work aims to design a constant-area two phase flow ejector and to evaluate performance characteristics of the ejector expansion refrigeration system working with R134a. In order to achieve these objectives, a simulation program is developed and effects of operating conditions and ejector internal efficiencies on the system performance are investigated using EES software. Comparison between present results and published experimental data revealed that the developed model can predict the system COP with a maximum error of 2.3%. The system COP increased by 87.5% as evaporation temperature changed from −10 °C to 10 °C. Finally, correlations to size ejector main diameters as a function of operating conditions, system cooling capacity and ejector internal efficiencies are reported.  相似文献   

3.
A miniature vapor compression refrigeration system included two heat sinks connected in series (indicated as series system) or in parallel (indicated as parallel system) was built. The performance of the series system was studied and compared with that of the parallel system. The results indicate that the largest cooling capacity of the two systems is about 160 W and the optimal refrigerant charge is about 0.6 Mtotal in the miniature vapor compress refrigeration (VCR) system. There is no relation between the optimal refrigerant charge and the arrangement of the heat sinks. The coefficient of performance (COP) of the series system ranged from 1.81 to 3.22, while the COP of the parallel system was in the range of 1.51–2.92 under the cooling capacity of 100 W. The cooling of the heat sink 2 lag behind that of the heat sink 1 in the serial system, while the refrigerant is difficult to equally distribute in the parallel system.  相似文献   

4.
To avoid global warming potential gases emission from vapor compression air-conditioners and water chillers, alternative cooling technologies have recently garnered more and more attentions. Thermoelastic cooling is among one of the alternative candidates, and have demonstrated promising performance improvement potential on the material level. However, a thermoelastic cooling system integrated with heat transfer fluid loops have not been studied yet. This paper intends to bridge such a gap by introducing the single-stage cycle design options at the beginning. An analytical coefficient of performance (COP) equation was then derived for one of the options using reverse Brayton cycle design. The equation provides physical insights on how the system performance behaves under different conditions. The performance of the same thermoelastic cooling cycle using NiTi alloy was then evaluated based on a dynamic model developed in this study. It was found that the system COP was 1.7 for a baseline case considering both driving motor and parasitic pump power consumptions, while COP ranged from 5.2 to 7.7 when estimated with future improvements.  相似文献   

5.
The prototype of an air-cooled double-lift NH3–H2O absorption chiller driven by hot water at low temperature is presented. The main objective of the study is to illustrate the experimental performances of the prototype under different operating conditions. A mathematical model of the cycle is developed, along with a procedure for the identification of otherwise difficult to measure data, with the purpose of providing the complete picture of the internal thermodynamic cycle. The combined experimental and numerical data allowed assessing the effects on the thermodynamic cycle with varying operating conditions. The unit operated steadily with chilled water inlet 12 °C, outlet 7 °C, air temperature between 22 °C and 38 °C, and hot water driving temperatures between 80 °C and 90 °C. The reference cooling capacity at air temperature of 30 °C is 2.5 kW, with thermal COP about 0.3 and electrical COP about 10.  相似文献   

6.
The COP (Coefficient of Performance) of an ammonia-water absorption refrigerator can be significantly improved by incorporating a mixing column and a second absorber which is combined with a two-stage refrigerant expansion. At an internal temperature lift of 85 K (−20°C to + 65°C), these modifications result in a 50% higher COP for cooling—assuming ideal components. With real components, a 40% improvement may be achieved. The proposed cycle was realised in a laboratory test plant with a refrigeration capacity of 10 kW at −20°C evaporator temperature. This machine was operated at a solution temperature up to 225°C and a condenser temperature of 65°C corresponding to a pressure up to 3.0 MPa. COP versus temperature lift and load behaviour was tested. A COP of 0.38 was achieved at a temperature lift of 85 K. An efficient high-temperature lift cycle like that described in this paper may find applications for deep freezing, as a topping cycle to achieve triple-effect performance, or as a device to produce simultaneous heating and cooling.  相似文献   

7.
Ammonia–water hybrid absorption–compression heat pumps (HACHP) are a promising technology for development of efficient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129 °C, and 140 bar up to 147 °C. If the compressor discharge temperature limit is increased to 250 °C and the vapour water content constraint is removed, this becomes: 182 °C, 193 °C and 223 °C.  相似文献   

8.
Hybrid-power gas engine heat pump (HPGHP) combines hybrid power technology with gas engine heat pump, which can keep the gas engine working in the economical zone. In this paper, a steady-state model of the HPGHP in heating condition has been established, the optimal torque curve control strategy is proposed to distribute power between the gas engine and battery pack. The main operating parameters of the HPGHP system are simulated on Matlab/Simulink and validated by experimental data, such as operating temperature, coefficient of performance (COP), fuel-consumed rate, etc. Heating capacity and COP of the heating pump system are validated under different ambient temperatures and water flow rates. The simulation and experiment results shows acceptable agreement, the maximum difference is respectively 8.9%, 5.9%, 9.5% and 8.2% for engine torque, motor torque, reclaimed heat and fuel-consumed rate. Based on the simulation results, HPGHP has the lowest fuel-consumed rate of 283 g (kWh)−1 at engine speed of 3000 rpm; the PER of HPGHP system is about 15.9% and 11.4% higher than the GHP under the same load in Mode C and D.  相似文献   

9.
This paper presents the design and construction of a prototype steam ejector refrigeration system which can be operated under the actual condition of Thai environment, which is rather hot and humid. The prototype refrigerator was designed to produce a cooling capacity of approximately 3 kW. Water was selected to be used as the working fluid. The steam boiler used was a vertical fire tube type and it was designed to be used with LPG compact gas burner. The condenser was cooled by water obtained from a conventional cooling tower. The prototype refrigerator was used to produce chilled water which was used to cool a small tested room. It was observed that the room temperature of 24.2 °C was obtained at the cooling load of 3000 W. The cooling water was supplied to the condenser at about 30 °C. The COP obtained was 0.45. This prototype refrigerator is proven to be practical and can be used in actual environment of Thailand.  相似文献   

10.
A vapor compression cycle with a solution circuit and desorber/absorber heat exchange (DAHX) has been investigated experimentally using the ammonia/water mixture. A breadboard heat pump was designed and built to measure the cycle performance. COPs in the range of 1.2–1.8 were obtained experimentally for a temperature lift between 60 and 80°C. The cooling capacities were between 7 and 12 kW, which increased with an increase of the ammonia concentration. The pressure ratios encountered were in the range of 2–6. A COP of 1.44 at the temperature lift of 79°C was recorded with a cooling capacity at 10.25 kW. The experimental results are compared to that of the single-stage and two-stage cycle. The two-stage system had the highest temperature lift (110–120°C) and the lowest COP (0.69–1.04). The single-stage system has the highest COP (2.2–3.5) but the lowest temperature lift (40°C). Also, a solution bypass between the Absorber I outlet and Desorber II inlet was proposed to improve the cycle performance. The experimental results showed that the COP varied in the range of 1–2%, while the temperature lift increased by the range between 0 and 6°C. In addition, the analysis of the test result uncertainties was made.  相似文献   

11.
CCHP (combined cooling heating and power) system based on ICE (internal combustion engine) has been widely used. A key issue is to efficiently recover the jacket water and exhaust gas waste heat for refrigeration. In this work, a mixed effect absorption chiller (AC), which couples single effect and double effect processes together, is investigated to recover these two kinds of waste heat simultaneously. The high pressure generator is powered by exhaust gas while one low pressure generator is powered by jacket water waste heat. Thermodynamic characteristics and off-design performance are simulated. Considering thermodynamic constraints, the start point temperature in low pressure generator should be 77°Cor lower. For a 16 kW ICE, the cooling output can reach 34.4 kW with COP of 0.96 and exergy efficiency of 0.186. Comparing with double effect or single effect AC, it can make a better use of different waste heat in CCHP system.  相似文献   

12.
A novel cascading adsorption cooling cycle for refrigeration purposes is proposed in this paper. This cycle consists of two zeolite adsorbent beds and a silica gel adsorbent bed. The working refrigerant for the three adsorbers is water. The zeolite adsorbent bed is configured as the high temperature stage while the silica gel adsorbent bed acts as the low temperature stage. Both heat and mass recovery are carried out between the two zeolite adsorbent beds. In addition, heat is also exchanged between the zeolite adsorbent and the silica gel adsorbent beds. A lumped model is assumed for this cascading cycle. The COP for the base case is found to be 1.35, which is much higher than the COP of an intermittent cycle (about 0.5) and a two-bed combined heat and mass recovery cycle (about 0.8). However, its specific cooling power (SCP) of 42.7 W/kg is much lower than that of the intermittent cycle. The numerical results indicate that an optimal middle temperature exists for a prescribed driven temperature. The optimal COP increases with an increase in the driven temperature. However, when the driven temperature increases beyond 503 K, there is negligible change in the COP.  相似文献   

13.
A new type of oil-free moving magnet linear compressor with clearance seals and flexure springs has been designed for incorporation into a vapour compression refrigeration system with compact heat exchangers for applications such as electronics cooling. A linear compressor prototype was built with a maximum stroke of 14 mm and a piston diameter of 19 mm. An experimental apparatus was built to measure the compressor efficiencies and coefficient of performance (COP) of a refrigeration system with the linear compressor, using R134a. The resonant frequency for each operating condition was predicted using the discharge pressure, suction pressure and stroke. Refrigeration measurements were conducted for different strokes under each pressure ratio with a fixed condenser outlet temperature of 50 °C and evaporator temperature ranging from 6 °C to 27 °C. The results show that the COPs are around 3.0 for tests with a pressure ratio of 2.5 (evaporator temperature of 20 °C).  相似文献   

14.
In this context, a two-stage absorption-transcritical hybrid refrigeration system is proposed. R744 is chosen as a refrigerant for the transcritical heat pump subsystem and LiBr-H2O working pair for the two-stage absorption refrigeration subsystem. Based on the mathematical and physical models, theoretical investigation is carried out on its performance. The main effects are discussed on COPnet (the ratio of cooling capacity powered by low-grade heat to the low-grade heat consumption for the hybrid system) and COPmt (the ratio of cooling capacity powered by mechanical work to the mechanical work consumption for the hybrid system). Comparing with the normal two-stage absorption refrigeration system, theoretical results show that COPnet could be improved up to about 55% when the refrigeration temperature is 7 °C. In addition, COPmt are more than 50% higher than that of the conventional transcritical refrigeration system. It is also found that both 45–55 °C low-grade heat and condensing heat could be used as actuating heat of the two-stage absorption refrigeration subsystem.  相似文献   

15.
The present work aims to evaluate the performance characteristics of a vapor compression refrigeration system using R-438A as a retrofit refrigerant for R-22. In order to achieve this objective, a test facility is developed and experiments are performed over a wide range of chilled water inlet temperature (11:20 °C), condenser water inlet temperature (25:35 °C) and condenser water mass flow rate (363:543 kg h−1). Results showed that as the chilled water inlet temperature changes from 11.5 to 20.5 °C, system COP increases from 1.78 to 2.07 at constant condenser water inlet temperature of 25.5 °C. Cooling capacity and COP of the system using R-438A are lower than R-22 by 11% and 12.5%, respectively. However, compressor discharge temperature using R-438A is slightly lower than R-22 which confirms that R-438A can be used as a retrofit refrigerant for R-22 to complete the remaining life time of the existing plants.  相似文献   

16.
This study introduced a novel energy saving cooling system, i.e. a combined cycle coupled with a traditional vapor compression cycle with a pumped liquid two-phase cooling cycle. The system has two operation modes, i.e. the compression cycle mode driven by compressor and the pump cycle mode driven by refrigerant pump. A multi-purpose test bench was constructed to experimentally evaluate the performance of the integrated cycle system under various operation conditions. The effects of cycle working condition and the shift temperature between the two operation modes on the overall cycle performance were investigated in detail. It is found that the novel cycle system has a higher EER compared to the traditional compressor system when the ambient temperature is relatively low. The further experimental results and comparative annual energy saving analysis also indicated that the proper shift temperature is about −5 °C from the system EER and cooling capacity point of view.  相似文献   

17.
A microwave assisted zeolite–water adsorption heat pump system was designed, manufactured and investigated experimentally. The influence of operation time of microwave oven on performance of the adsorption heat pump was studied. The performance criteria: coefficient of performance, specific cooling power and volumetric cooing power, were calculated for the designed and tested adsorption heat pump system. The regeneration of adsorbent bed was achieved very rapidly (35 min) by using microwave heating system. The poor thermal conductivity of adsorbent did not affect the periods of isosteric heating and isobaric desorption processes.  相似文献   

18.
This paper presents a proposal for a venting reverse vapor in flash gas removal A/C system in order to improve refrigerant distribution and reduce pressure drop in microchannel evaporator and thus increase system efficiency. Introduction to the reverse vapor flow observed in parallel flow microchannel evaporator was presented in earlier IJR paper by the authors. An experimental comparison of the A/C system with new approach to an FGB system revealed that vapor venting provided a 5% increase of cooling capacity and 3% of COP when operated at identical test conditions, while the maximum COP improvement was approximately 10%–12% when capacity is matched by reduction of compressor speed. The improvement compared to direct expansion system was significantly higher.  相似文献   

19.
A novel experimental investigation of a solar cooling system in Madrid   总被引:5,自引:2,他引:3  
This paper reports novel experimental results derived through field testing of a part load solar energized cooling system for typical Spanish houses in Madrid during the summer period of 2003. Solar hot water was delivered by means of a 49.9 m2 array of flat-plate collectors to drive a single-effect (LiBr/H2O) absorption chiller of 35 kW nominal cooling capacity. Thermal energy was stored in a 2 m3 stratified hot water storage tank during hours of bright sunshine. Chilled water produced at the evaporator was supplied to a row of fan coil units and the heat of condensation and absorption was rejected by means of a forced draft cooling tower. Instantaneous, daily and period energy flows and energy balance in the installation is presented. System and absorption machine temperature profiles are given for a clear, hot and dry day's operation. Daily and period system efficiencies are given. Peak insolation of 969 W m−2 (at 12:30 solar time on 08/08/03) produced 5.13 kW of cooling at a solar to cooling conversion efficiency of 11%. Maximum cooling capacity was 7.5 kW. Cooling was provided for 8.67 h and the chiller required a threshold insolation of 711 W m−2 for start-up and 373 W m−2 for shut-down. A minimum hot water inlet temperature to the generator of 65 °C was required to commence cold generation, whereas at 81 °C, 6.4 kW of cooling (18.3% of nominal capacity) was produced. The absorption refrigeration machine operated within the generation and absorption temperature ranges of 57–67 and 32–36 °C, respectively. The measured maximum instantaneous, daily average and period average COP were 0.60 (at maximum capacity), 0.42 and 0.34, respectively. Energy flows in the system are represented on a novel area diagram. The results clearly demonstrate that the technology works best in dry and hot climatic conditions where large daily variations in relative humidity and dry bulb temperature prevail. This case study provides benchmark data for the assessment of other similar prototypes and for the validation of mathematical models.  相似文献   

20.
This paper studies the influence of working fluids over the performance of heat driven ejector refrigeration systems performance by using a lumped parameter model. The model used has been selected after a comparison of different models with a set of experimental data available in the literature. The effect of generator, evaporator and condenser temperature over the entrainment ratio and the COP has been investigated for different working fluids in the typical operating conditions of low grade energy sources. The results show a growth in performance (the entrainment ratio and the COP) with a rise in the generator and evaporator temperature and a decrease in the condenser temperature. The working fluids have a great impact on the ejector performance and each refrigerant has its own range of operating conditions. R134a is found to be suitable for low generator temperature (70–100 °C), whereas the hydrocarbons R600 is suitable for medium generator temperatures (100–130 °C) and R601 for high generator temperatures (130–180 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号