首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ammonia is a naturally occurring environment friendly refrigerant with attractive thermo-physical properties. Experimental investigation of heat transfer and pressure drop during steady state evaporation of ammonia in a commercial plate heat exchanger has been carried out for an un-symmetric 30°/60° chevron plate configuration. Experiments were conducted for saturation temperatures ranging from −25 °C to −2 °C. The heat flux was varied between 21 kW m−2 and 44 kW m−2. Experimental results show significant effect of saturation temperature, heat flux and exit vapor quality on heat transfer coefficient and pressure drop. Current mixed plate configuration data are compared with previous studies on the same heat exchanger with symmetric plate configurations. This comparison highlighted importance of optimization in selection of the heat exchangers. Correlations for two phase Nusselt number and friction factor for each chevron plate configuration considered are developed. A Nusselt number correlation generalized for a range of chevron angles is also proposed.  相似文献   

2.
Nanofluids technology has been rapidly developing over the last two decades. In this paper, the performance of a lithium bromide (LiBr) solution with and without nanoparticles in plate heat exchanger (PHE) for various chevron angles and mass flow rates was investigated. As a result, the heat transfer rate and the overall heat transfer coefficient in 60°/60° PHE is over 100% higher than that of 30°/30° PHE, and the effectiveness of the PHE in 60°/60° PHE is about 70% higher than that of 30°/30° PHE. By using nanoparticle in the working fluid, the heat transfer performance can increase significantly. The heat transfer rate of 3 vol.% nanofluids increased about 3–8% compare to that of LiBr solution for all chevron PHEs. Besides, the 60°/60° PHE using 3 vol.% nanofluids produced the largest heat transfer rate and heat exchange effectiveness under given operating conditions.  相似文献   

3.
The airside performance of fin-and-tube heat exchangers having slit geometry is experimentally investigated in this study. A total of 12 samples were tested and compared. Effects of fin pitch and the number of tube row were examined. The test results indicated that the heat transfer performance increase with decrease of fin pitch for N=1. However, for N4, the effect of fin pitch on the heat transfer performance is reversed. In addition to the effect of fin pitch, the heat transfer performance decrease with increase of the number of tube row and the friction factors are relatively independent of the number of tube row. Based on the present test results and those from previous investigations, a general correlation is proposed to describe the airside performance of the slit fin configuration, the mean deviations of the proposed heat transfer and friction correlation are 5.5 and 3.8%, respectively.  相似文献   

4.
A plate-type evaporator, working with natural refrigerant circulation, has been investigated both experimentally and theoretically. Motivated by the phase-out of ozone-depleting substances, HCFC22 was compared to HFC134a and two zeotropic refrigerant mixtures. The effect of different separator liquid levels, i.e. refrigerant flows, and its influence on heat transfer was also studied. The investigated plate-type evaporator consists of thirteen vertical flow channels and its size is 3.0 m × 0.5 m. The heat source for the evaporator is a falling water film on the outside of the plate. Experimental studies have been carried out using a test facility that enabled detailed measurements of heat transfer and pressure drop. Experiments were compared to results from a calculation method that simultaneously calculates heat transfer and pressure drop in a variable number of steps along the evaporator. The calculation method is based on a pressure drop correlation proposed by the VDI-Wärmeatlas and a heat transfer correlation for vertical tubes proposed by Steiner and Taborek. For different evaporator duties, heat transfer was over predicted by 12% for pure fluids by 15% for mixtures. Calculated pressure drops were well within ±5% of the measured values. Changes in heat transfer due to different flows were closely predicted by the proposed calculation method.  相似文献   

5.
    
Thermal characteristics of ammonia flow boiling in a microfin plate evaporator are experimentally investigated. Titanium microfin heat transfer surface is manufactured to enhance boiling heat transfer. Longitudinally- and laterally-microfined surfaces are used and those performances are compared. Heat transfer coefficient of microfin plate evaporator is also compared with that of plain-surface plate evaporator. The effects of mass flux, heat flux, channel height, and saturation pressure on heat transfer coefficient are presented and discussed. The experiments are conducted for the range of mass flux (5 and 7.5 kg m−2 s−1), heat flux (10, 15, and 20 kW m−2), channel height (1, 2, and 5 mm), and saturation pressure (0.7 and 0.9 MPa). Heat transfer coefficient is compared with that predicted by available empirical correlations proposed by other researchers. Modified correlations using Lockhart-Martinelli parameter to predict heat transfer coefficient are developed and they cover more than 87% of the experimental data.  相似文献   

6.
Fin-and-tube heat exchangers are widely used in air conditioners, chillers, etc. A lot of factors, including arrangement of refrigerant circuits, configure specification of fins and tubes, and operating conditions, have significant influence on the performance of fin-and-tube heat exchangers. For the purpose of fast design of high performance heat exchangers, a simulator reflecting the influence of these factors is necessary. In this paper, a general steady state mathematic model based on the graph theory is presented. With the help of the directed graph and graph-based traversal methods (Breadth-first search and Depth-first search), this model is capable to describe any flexible refrigerant circuit arrangement, and quantify the refrigerant distribution in the refrigerant circuit and heat conduction through fins. An alternative iteration method is also developed to solve the conservation equations, which can shorten the simulating time effectively. The model is verified with the experimental results, and the maximum error is within ±10.0%. A simulator based on this model has been used for designing practical fin-and-tube heat exchangers.  相似文献   

7.
This paper presents the experimental heat transfer coefficients and pressure drop measured during refrigerant R134a vaporisation inside a small brazed plate heat exchanger (BPHE): the effects of heat flux, refrigerant mass flux, saturation temperature and outlet conditions are investigated. The BPHE tested consists of 10 plates, 72 mm in width and 310 mm in length, which present a macro-scale herringbone corrugation with an inclination angle of 65° and corrugation amplitude of 2 mm.The experimental results are reported in terms of refrigerant side heat transfer coefficients and frictional pressure drop. The heat transfer coefficients show great sensitivity both to heat flux and outlet conditions and weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow.The experimental heat transfer coefficients are also compared with two well-known correlations for nucleate pool boiling and a correlation for frictional pressure drop is proposed.  相似文献   

8.
    
Ice slurry is a promising alternative to conventional single-phase coolants in indirect refrigeration systems. In this paper, an experimental analysis of an offset strip-fin heat exchanger operating with ice slurry as working fluid is presented. The pressure drop and thermal performance have been determined. In order to obtain the partial thermal resistance in the ice slurry side an empirical correlation for the secondary fluid side was determined by applying the Wilson plot method in a set of tests performed previously. An empirical correlation in terms of the Colburn j-factor to describe the thermal behavior of the heat exchanger with ice slurry was obtained. On the other hand, the direct pressure drop measurements operating with different flow rates and ice fractions are shown and compared with values obtained with single-phase fluids. Pressure drop instabilities have been observed for flow rates lower than the nominal value provided by the manufacturer.  相似文献   

9.
    
A flow boiling heat transfer model for horizontal tubes is proposed for CO2 with entrained polyalkylene glycol (PAG) type lubricating oil in the pre-dryout region. A general power law-type model with a power number of 3 is used together with the average thermodynamic properties of the CO2–oil mixture. A convective enhancement factor (F) is recommended according to the relationship between the Lockhart–Martinelli parameter and the ratio αtp/αl, which was obtained based on previous experimental results for CO2 and oil. A new suppression factor (S) is introduced that comprises a suppression term for forced convection and oil concentration term for bubble generation. A comparison of six correlations showed that the proposed correlation can depict the influence of the mass and heat fluxes on both nucleate and convection boiling reasonably well.  相似文献   

10.
Experimental data of the local heat transfer coeffcient of flow boiling ammonia in dependence of vapor fraction, mass flux and local heat flux is presented. Two horizontal test sections of 450 mm length and an inner diameter of 10 mm have been used, one being a plain tube, one being a spirally low finned tube. A constant wall temperature boundary has been aimed for the test section by heating with a fluid condensing on the tube outside. Local heat transfer coeffcients and pressure drops have been measured in the range −40 < Tsat < 4°C, 0 < x< 0.9, 50 < < 150 kg/m2 s and 2 < ΔTw < 15 K with resulting heat fluxes of 17 < < 75 kW/m2. The vapor quality is denoted as x, is the mass flux and ΔTw the wall superheat. The measured data is carefully evaluated using a finite element model of the tube with regard to the circumferential heat flow distribution. The smooth tube results are compared with recently published data and the correlation from Zürcher (Zürcher, O., Thome, J.R., Favrat, D. Evaporation of ammonia in a smooth horizontal tube: heat transfer measurements and predictions. Journal of Heat Transfer, 1999;121:89–101), and with the correlations of Steiner (Steiner D. Strömungssieden gesättigter Flüssigkeiten. VDI-Wärmeatlas, vol. 8. VDI-Verlag, 1997) and Kattan (Kattan N, Thome JR, Favrat D. Flow boiling in horizontal tubes: part 3 — development of a new heat transfer model based on flow pattern. Transactions of the ASME, 1998;120). The results of the low finned tube are not matched by any known correlation.  相似文献   

11.
This paper presents the experimental tests on HFC-134a condensation inside a small brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature and vapour super-heating are investigated.A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 20 kg/m2 s. For refrigerant mass flux lower than 20 kg/m2 s, the saturated vapour heat transfer coefficients are not dependent on mass flux and are well predicted by the Nusselt [Nusselt, W., 1916. Die oberflachenkondensation des wasserdampfes. Z. Ver. Dt. Ing. 60, 541–546, 569–575] analysis for vertical surface. For refrigerant mass flux higher than 20 kg/m2 s, the saturated vapour heat transfer coefficients depend on mass flux and are well predicted by the Akers et al. [Akers, W.W., Deans, H.A., Crosser, O.K., 1959. Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55, 171–176] equation. In the forced convection condensation region, the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by the Webb [Webb, R.L., 1998. Convective condensation of superheated vapour. ASME J. Heat Transfer 120, 418–421] model. The heat transfer coefficients show weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on the refrigerant mass flux.  相似文献   

12.
Evaporative heat transfer and pressure drop of R410A in microchannels   总被引:5,自引:0,他引:5  
Convective boiling heat transfer coefficients and two-phase pressure drops of R410A are investigated in rectangular microchannels whose hydraulic diameters are 1.36 and 1.44 mm. The mass flux was varied from 200 to 400 kg/m2s, heat flux from 10 to 20 kW/m2, as the saturation temperatures were maintained at 0, 5 and 10 °C. A direct heating method was used to provide heat flux into the fluid. The boiling heat transfer coefficients of R410A in the microchannels were much different with those in single tubes, and the test conditions only slightly affected the heat transfer coefficients before dryout vapor quality. The present heat transfer correlation for microchannels, which was developed by introducing non-dimensional parameters of Bo, Wel, and Rel used in the existing heat transfer correlations for large diameter tubes, yielded satisfactory predictions of the present data with a mean deviation of 18%. The pressure drops of R410A in the microchannels showed very similar trends with those in large diameter tubes. The existing two-phase pressure drop correlations for R410A in microchannels satisfactorily predicted the present data.  相似文献   

13.
This paper presents an overview of the issues and new results for in-tube condensation of ammonia in horizontal round tubes. A new empirical correlation is presented based on measured NH3 in-tube condensation heat transfer and pressure drop by Komandiwirya et al. [Komandiwirya, H.B., Hrnjak, P.S., Newell, T.A., 2005. An experimental investigation of pressure drop and heat transfer in an in-tube condensation system of ammonia with and without miscible oil in smooth and enhanced tubes. ACRC CR-54, University of Illinois at Urbana-Champaign] in an 8.1 mm aluminum tube at a saturation temperature of 35 °C, and for a mass flux range of 20–270 kg m−2 s−1. Most correlations overpredict these measured NH3 heat transfer coefficients, up to 300%. The reasons are attributed to difference in thermophysical properties of ammonia compared to other refrigerants used in generation and validation of the correlations. Based on the conventional correlations, thermophysical properties of ammonia, and measured heat transfer coefficients, a new correlation was developed which can predict most of the measured values within ±20%. Measured NH3 pressure drop is shown and discussed. Two separated flow models are shown to predict the pressure drop relatively well at pressure drop higher than 1 kPa m−1, while a homogeneous model yields acceptable values at pressure drop less than 1 kPa m−1. The pressure drop mechanism and prediction accuracy are explained though the use of flow patterns.  相似文献   

14.
Flow boiling of a potential refrigerant R32/R1234ze(E) in a horizontal microfin tube of 5.21 mm inner diameter is experimentally investigated. The heat transfer coefficient (HTC) and pressure drop are measured at a saturation temperature of 10 °C, heat fluxes of 10 and 15 kW m?2, and mass velocities from 150 to 400 kg m?2 s?1. The HTC of R1234ze(E) is lower than that of R32. Degradation in the HTC of the R32/R1234ze(E) mixture is significant; the HTC is even lower than that of R1234ze(E). The HTC is minimized at the composition 0.2/0.8 by mass, where the temperature glide and the mass fraction distribution are maximized. A predicting correlation based on Momoki et al. (1995) associated with the correction methods of Thome (1981) to consider the mass transfer resistance and Stephan (1992) to consider the additionally required sensible heat is proposed and validated with the experimental results.  相似文献   

15.
In this study, condensation heat transfer coefficients and pressure drops of R-410A are obtained in flattened microfin tubes made from 7.0 mm O.D. round microfin tubes. The test range covers saturation temperature 45 °C, mass flux 100–400 kg m−2 s−1 and quality 0.2–0.8. Results show that the effect of aspect ratio on condensation heat transfer coefficient is dependent on the flow pattern. For annular flow, the heat transfer coefficient increases as aspect ratio increases. For stratified flow, however, the heat transfer coefficient decreases as aspect ratio increases. The pressure drop always increases as aspect ratio increases. Possible reasoning is provided based on the estimated flow pattern in flat microfin tubes. Comparison with existing round microfin tube correlations is made.  相似文献   

16.
A comprehensive review of flow boiling heat transfer, two-phase pressure drops and flow patterns of ammonia and hydrocarbons applied in air-conditioning, refrigeration and heat pump systems is presented in this paper. First, experimental studies of flow boiling of ammonia and hydrocarbons are addressed. Then, the prediction methods for flow boiling heat transfer, two-phase pressure drops and flow patterns are described. Next, comparisons of four flow boiling heat transfer and four two-phase pressure drop methods to the experimental data in smooth tubes derived from the available studies are presented. In addition, comparison of flow patterns to a flow map is presented. Based on the comparisons and analysis, recommendations on these methods are given. Furthermore, research needs on flow boiling and two-phase flow of ammonia and hydrocarbons have been identified. It is suggested that more experimental data be obtained through well conducted experiments and new prediction methods or modified ones based on the available methods be made for ammonia and hydrocarbons. In addition, the effect of oil on ammonia and hydrocarbon flow boiling and two-phase flow should be studied in order to have conclusive evidence of its effect.  相似文献   

17.
Single-phase heat transfer and pressure drop characteristics of a commercially available internally micro-finned tube with a nominal outside diameter of 7.94 mm were studied. Experiments were conducted in a double pipe heat exchanger with water as the cooling as well as the heating fluid for six sets of runs. The pressure drop data were collected under isothermal conditions. Data were taken for turbulent flow with 3300 ≤ Re ≤ 22,500 and 2.9 ≤ Pr ≤ 4.7. The heat transfer data were correlated by a Dittus–Boelter type correlation, while the pressure drop data were correlated by a Blasius type correlation. The correlation predicted values for both the Nusselt number and the friction factors were compared with other studies. It was found that the Nusselt numbers obtained from the present correlation fall in the middle region between the Copetti et al. and the Gnielinski smooth tube correlation predicted Nusselt number values. For pressure drop results, the present correlation predicted friction factors values were nearly double that of the Blasius smooth tube correlation predicted friction factors. It was also found that the rough tube Gnielinski and Haaland correlations can be used as a good approximation to predict the finned tube Nusselt number and ffriction factor, respectively, in the tested Reynolds number range.  相似文献   

18.
This paper presents results concerning flow boiling heat transfer in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The refrigerant flowing in the minichannel, Fluorinert FC-72, was heated by a thin foil microstructured on the side in contact with the fluid. Two types of microstructured surfaces were used: one with evenly distributed microcavities and the other with non-uniformly distributed minicavities. Liquid crystal thermography was applied to determine the temperature of the smooth side of the foil. The paper analyses mainly the impact of the microstructured heating surface and orientation of the minichanel on the heat transfer coefficient and two phase pressure drop. This required calculating the local values of heat transfer coefficient and measuring the pressure drop for different positions of the minichannel with enhanced heating wall. Moreover, the effects of selected thermal and flow parameters (mass flux density and inlet pressure), the geometric parameters, and the type of cooling liquid on the nucleate boiling heat transfer is studied. From the measurement results it is evident that applying a microstructured surface caused an increase in the heat transfer coefficient, which was approximately twice as high as that reported for the smooth surface. The highest values of the coefficient were observed for position 90° (the vertical minichannel) and position 0° (the horizontal minichannel), whereas the lowest were reported for position 180° (the horizontal minichannel). The experimental data concerning the two-phase flow pressure drop was compared with the calculation results obtained by applying nine correlations known from the literature. It is reported that most of the correlations can be used to predict the two-phase flow pressure drop gradient within an acceptable error limit (±30%) only for positions 90° and 135° (the vertical and inclined minichannels, respectively). The lowest agreement between the experimental data and the theoretical predictions was reported for the horizontal positions of the minichannel.  相似文献   

19.
The heat transfer coefficient and pressure drop during gas cooling process of CO2 (R744) in a horizontal tube were investigated experimentally. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a gas cooler (test section). The water loop consists of a variable speed pump, an isothermal tank, and a flow meter. The refrigerant, circulated by the variable-speed pump, condenses in the inner tube while water flows in the annulus. The gas cooler of tube diameter is 6000 mm in length, and it is divided into 12 subsections.The pressure drop of CO2 in the gas cooler shows a relatively good agreement with those predicted by Blasius's correlation. The local heat transfer coefficient of CO2 agrees well with the correlation by Bringer–Smith. However, at the region near Pseudo-critical temperature, the experiments indicate higher values than the Bringer–Smith correlation. Based on the experimental data presented in this paper, a new correlation to predict the heat transfer coefficient of supercritical CO2 during in-tube cooling has been developed. The majority of the experimental values are within 18% of the values predicted by the new correlation.  相似文献   

20.
林泉来  裴清清 《制冷》2010,29(4):21-24
为了使平行流换热器在干盘管中得到推广应用,本文根据传热及压降关联式,采用数值模拟计算的方法,研究了干盘管用平行流换热器翅片参数对其空气侧换热性能及压降的影响,为干盘管用平行流换热器的设计提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号