首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对YOLOv4网络模型参数量大,难以在资源有限的设备平台上运行的问题,提出一种对YOLOv4轻量化的车辆和行人检测网络。以MobileNetV1为主干网络,将PANet和YOLO Head结构中的标准卷积替换成深度可分离卷积,减少模型参数量;同时利用跨深度卷积结合不同膨胀率的空洞卷积构建特征增强模块,改善不同预测层对车辆和行人尺度变化的适应能力,提高网络的检测精度。实验结果表明,上述网络模型大小为45.28MB,检测速度为44FPS,相比YOLOv4模型大小减少81.44%,检测速度提升91.30%,在PASCAL VOC2007测试集上,检测精度达到86.32%,相比MobileNetV1-YOLOv4原网络提高1.29%的精确度,能够满足实时高效的检测要求。  相似文献   

2.
为有效解决车辆目标检测算法参数量大、计算成本高等问题,提出一种改进YOLOv3算法。利用深度可分离卷积和注意力机制重新设计主干特征提取网络结构,通过增大神经网络深度、拓宽特征提取层数实现更高层语义信息的提取,可获得更精细特征,减少模型参数量和计算量;引入CIOU回归优化损失函数,量化预测框与真实框中心点距离、重叠面积、尺度以及长宽比等评测指标,解决均方误差(MSE)损失优化方向不一致的问题,使目标框回归更加稳定。实验结果表明,该算法参数量为19.56M,比YOLOv3算法降低了近67%,同时平均精度均值(m AP)提高了3.68%,每秒帧数(FPS)提高了8帧,为车辆目标检测提供了容易部署在移动端的轻量级网络。  相似文献   

3.
针对交通拥堵的车辆密集场景中检测目标重叠率高而导致漏检和误检的问题,提出了改进YOLOv3、CIoU损失函数优化以及SD-NMS优化算法(简记L-YOLOv3+CIoU Loss+SD-NMS)。利用深度可分离卷积、SE模块和Ghost模块改进YOLOv3的残差单元结构,以提高对密集目标的特征提取能力,减少网络模型参数量;采用完整交并比CIoU损失函数加快网络模型收敛速度,同时将多目标集合预测思想与DIoU-NMS有机结合,提出了SD-NMS优化算法,以降低漏检误检率。在BDD100K数据集上进行实验,结果表明,改进的目标检测算法召回率达到91.58%,精准率达到93.04%,与YOLOv3算法相比,召回率和精准率分别提升了12.09%和9.52%,具有更好的检测效果。  相似文献   

4.
基于改进YOLOv4算法的轻量化网络设计与实现   总被引:2,自引:0,他引:2  
在嵌入式设备上进行目标检测时易受能耗和功耗等限制,使得传统目标检测算法效果不佳。为此,对YOLOv4算法进行优化,设计YOLOv4-Mini网络结构,将其特征提取网络由CSPDarkNet53改为MobileNetv3-large并进行INT8量化处理,其中网络结构利用PW和DW卷积操作代替传统卷积操作以大幅减少计算量。采用SE模块为通道施加注意力机制,激活函数层运用h-swish非线性激活函数,在保证精度的情况下降低网络计算量。同时,通过量化感知训练将权重转为INT8类型,以实现模型轻量化,进一步降低网络参数量和计算量,从而在嵌入式设备上完成无人机数据集的目标检测任务。在NVIDIA Jetson Xavier NX设备上进行测试,结果显示,YOLOv4-MobileNetv3网络的mAP为34.3%,FPS为30,YOLOv4-Mini网络的mAP为32.5%,FPS为73,表明YOLOv4-Mini网络能够在低功耗、低能耗的嵌入式设备上完成目标实时检测任务。  相似文献   

5.
针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。  相似文献   

6.
针对交通目标检测模型参数量大、检测精度低、检测速度慢、泛化性差等问题,提出一种基于GhostNet与注意力机制的YOLOv5交通目标实时检测模型.采用基于遗传算法的K-means聚类方法获取适用于车辆检测的最佳预选框;采用轻量的Ghost卷积提取目标特征,并构建基于CSP结构的C3Ghost模块,大幅度压缩模型参数量,降低计算成本,提高计算速度;在特征融合层添加Transformer block和CBAM注意力模块,来探索模型特征提取潜力以及为模型在密集对象的场景中寻找注意力区域; UA-DETRAC数据集上的消融实验和综合性能评价结果表明所提模型平均精度达到98.68%,参数量为47 M,检测速度为65 FPS,与YOLOv5相比,参数量压缩了34%,速度提升43%,平均精度提高了1.05%.  相似文献   

7.
为了轻量化模型,便于移动端设备的嵌入,对YOLOv4网络进行了改进.首先,用MobileNetV3作为主干网络,并使用深度可分离卷积替换加强特征提取网络的普通卷积,降低模型参数量;其次,在104×104特征图输出时融合空洞率为2的空洞卷积,与52×52的特征层进行特征融合,获取更多的语义信息和位置信息,细化特征提取能力,提升模型对极小目标的检测性能;最后,将原来的池化层使用3个5×5的Maxpool进行串联,减少计算量,提升检测速度.实验结果表明,在华为云2020数据集上,改进算法的mAP比YM算法提高了2.33%,在公共数据集VOC07+12上, mAP提高了3.12%, FPS比原来的YOLOv4算法提高了一倍多,参数量降低至原来的18%,证明了改进算法的有效性.  相似文献   

8.
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3 × 3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。  相似文献   

9.
针对当前YOLOv4目标检测算法网络模型庞大、特征提取不充分且易受光线环境影响的缺点,提出了一种优化了特征提取网络和一般卷积块的轻量化YOLOv4-Lite网络模型。使用改进的MobileNetv3替换原有的主干特征提取网络,减小了网络模型的参数量,提高了检测精度。提出了使用深度可分离卷积块代替原网络中的普通卷积块,使得模型的参数量进一步降低。结合了标签平滑、学习率余弦退火衰减算法,新增了SiLU激活函数代替MobileNetv3浅层网络的ReLU激活函数,优化了模型的收敛效果。优化了Mosaic数据增强方法,提升了模型的鲁棒性。在人脸口罩佩戴任务中与原算法相比,牺牲了1.68%的mAP,但在检测效率(FPS)上提升约180%。  相似文献   

10.
针对日常道路场景下的车辆目标检测问题,提出一种轻量化的YOLOv4交通信息实时检测方法。首先,制作了一个多场景、多时段的车辆目标数据集,并利用K-means++算法对数据集进行预处理;其次,提出轻量化YOLOv4检测模型,利用MobileNet?v3替换YOLOv4的主干网络,降低模型的参数量,并引入深度可分离卷积代替原网络中的标准卷积;最后,结合标签平滑和退火余弦算法,使用LeakyReLU激活函数代替MobileNet?v3浅层网络中原有的激活函数,从而优化模型的收敛效果。实验结果表明,轻量化YOLOv4的权值文件为56.4 MB,检测速率为85.6 FPS,检测精度为93.35%,表明所提方法可以为实际道路中的交通实时信息检测及其应用提供参考。  相似文献   

11.
针对无人机全自主飞行对目标检测的实时性与准确性需求不断提升的现状,对现有YOLOv4网络进行优化,提出采用轻量型MobilenetV3网络取代原始模型中的主干特征提取网络,并在特征金字塔结构中利用深度可分离卷积模块取代传统卷积,实现了保证模型检测精度的同时减少模型参数的目的。通过采用CIOU位置回归损失函数,促使目标框回归变得更加稳定,采用的数据增强方法进一步提高了目标检测算法的鲁棒性。在相同配置条件下的对比实验结果表明,改进YOLOv4模型损失小幅精度却实现检测速度的大幅提升,其中参数容量减少82%,仅44.74 M,FPS提升69%并达到22帧/s,验证了所提算法的有效性。  相似文献   

12.
针对当前目标检测网络层数加深、参数量和计算量加大,造成实时性差等问题,为了实现对输电线路部件的识别与检测,提出一种基于改进YOLOv5的输电线路多目标检测算法。首先,使用ShuffleNetv2结构作为网络特征提取的主干结构,减少网络的参数量;然后,将PANet网络中的BottleneckCSP改为Light_CSP模块,加快特征融合的速度;其次,使用CIoU loss、DIoU-NMS方法减少预测框的位置损失和漏检问题。最后,为了验证所提算法的有效性,利用输电线路图像数据集进行训练与测试。结果表明,改进YOLOv5的参数量为7.5×106,浮点计算量为10.9,平均精度达到了87.5%,FPS达到69.2,能够满足输电线路部件检测的精度、轻量化与实时性要求。  相似文献   

13.
针对现有煤矿工人安全帽佩戴检测算法存在检测精度与速度难以取得较好平衡的问题,以YOLOv4模型为基础,提出了一种融合坐标注意力与多尺度的轻量级模型M-YOLO,并将其用于安全帽佩戴检测。该模型使用融入混洗坐标注意力模块的轻量化特征提取网络S-MobileNetV2替换YOLOv4的特征提取网络CSPDarknet53,在减少相关参数量的前提下,有效改善了特征之间的联系;将原有空间金字塔池化结构中的并行连接方式改为串行连接,有效提高了计算效率;对特征融合网络进行改进,引入具有高分辨率、多细节纹理信息的浅层特征,以有效加强对检测目标特征的提取,并将原有Neck结构中的部分卷积修改为深度可分离卷积,在保证检测精度的前提下进一步降低了模型的参数量和计算量。实验结果表明,与YOLOv4模型相比,M-YOLO模型的平均精度均值仅降低了0.84%,但计算量、参数量、模型大小分别减小了74.5%,72.8%,81.6%,检测速度提高了53.4%;相较于其他模型,M-YOLO模型在准确率和实时性方面取得了良好的平衡,满足在智能视频监控终端上嵌入式加载和部署的需求。  相似文献   

14.
针对基于深度学习的海上船舶目标检测任务中存在检测网络复杂且参数量大、检测实时性差的问题, 提出一种加强特征融合的轻量化YOLOv4算法——MA-YOLOv4. 首先使用MobileNetv3替换主干网络, 引入新的激活函数SiLU并使用深度可分离卷积代替普通3×3卷积降低网络参数量; 其次加入自适应空间特征融合模块加强特征融合; 最后使用MDK-means聚类算法得到适用于船舶目标的锚框, 用Ship7000数据集进行训练和评估. 实验结果表明, 改进算法与YOLOv4相比, 模型参数量降低82%, mAP提高2.57%, FPS提高30帧/s, 能实现对海上船舶的高精度实时检测.  相似文献   

15.
针对现有基于深度学习的电铲检测方法未能很好地平衡检测速度与检测精度的问题,提出了一种改进YOLOv7模型,并将其用于矿用电铲检测。该模型以YOLOv7模型为基础,在主干网络中采用轻量化GhostNet网络进行特征提取,在颈部网络中采用轻量级GSConv替换部分普通卷积,以减少模型参数量和计算量,提高模型检测速度;考虑到轻量化改进后模型参数量减少对特征信息提取能力的影响,在不增加计算量的前提下,对颈部网络进行进一步改进,在扩展高效层聚合网络(ELAN)中嵌入坐标注意力机制(CA),同时利用双向特征金字塔网络(BiFPN)改进路径聚合网络(PANet),以提高网络对特征信息的提取能力,进而有效提高模型检测精度。实验结果表明,与YOLOv7模型相比,改进YOLOv7模型的参数量减少了75.4%,每秒浮点运算次数减少了82.9%,检测速度提高了24.3%;相较于其他目标检测模型,改进YOLOv7模型在检测速度和检测精度方面取得了良好的平衡,满足在露天煤矿场景下对电铲进行实时、准确检测的需求,为嵌入到移动设备中提供了有利条件。  相似文献   

16.
李孟歆  李易营  李松昂 《计算机仿真》2023,(10):152-156+161
针对实景交通标志检测方法研究中存在小目标识别精度较低、网络模型较大等问题,将一种改进的YOLOv5网络模型用于交通标志检测中。通过削减特征金字塔深度、引入卷积注意力模块优化网络结构,保留小目标信息并增强模型特征提取能力。采用K-means聚类算法确定适用于小目标识别的初始锚框,进一步提高模型检测精度。通过TT100K数据集验证表明,与YOLOv5模型相比,上述方法平均准确率提高3.0%,小目标检测平均精度提高5.0%,且模型大小为原模型的25.1%,保证较高识别能力的同时减少了模型参数量,实验对比结果验证了该方法的有效性。  相似文献   

17.
针对移动端目标检测算法需要模型参数量与计算量更少、推理速度更快和检测效果更好以及目标检测算法对于小目标误检、漏检及特征提取能力不足等问题, 提出一种基于YOLOv5改进的轻量化目标检测算法. 该算法使用轻量级网络MobileNetV2作为目标检测算法的骨干网络降低模型的参数量与计算量, 通过使用深度可分离卷积结合大卷积核的思想降低网络的计算量与参数量, 并提升了小目标的检测精度. 使用GhostConv来替换部分普通卷积, 进一步降低参数量与计算量. 本文算法在VOC竞赛数据集, COCO竞赛数据集两份数据集上均进行了多次对比实验, 结果表明本文算法相比于其他模型参数量更小、计算量更小、推理速度更快以及检测精度更高.  相似文献   

18.
针对现存交通标志识别模型参数量过大、检测速度慢和检测精度较低的问题,本文提出一种改进YOLOv4-tiny的交通标志识别算法.该算法将深度可分离卷积应用到YOLOv4-tiny的特征提取网络中,显著降低了主干网络的参数量和计算量.在特征融合阶段,将特征提取网络得到的不同层次特征图输入双向特征金字塔网络结构(BiFPN)中进行多尺度特征融合.最后,在损失函数设计过程中,使用Focal损失函数代替二分交叉熵损失函数,使检测过程中的正负样本数量不均衡问题得以解决.在TT100K数据集上的测试结果表明,该算法的平均精度均值达到87.5%,相比于YOLOv4-tiny提升了3.9%,模型大小为14MB,仅为YOLOv4-tiny的58%.该算法一定程度上减少了计算量和模型大小,并带来了检测速度和精度的提升.  相似文献   

19.
为解决YOLOv4在目标检测任务中检测速度低、模型参数多等问题,提出一种改进YOLOv4的目标检测算法。将YOLOv4主干网络中的CSPDarknet53替换成Mobilenet用以增强YOLOv4的特征提取网络,PANet原有的3×3标准卷积被深度可分离卷积取代,以降低计算负荷,从而提高识别速度,减少模型参数。然后使用K-means+〖KG-*3〗+算法对由8565张图像组成的数据集进行anchor维度聚类,以提升算法精度。同时,搭建行人口罩佩戴及人体测温拍摄系统用以在人群密集场所中执行疫情防控任务。在保证YOLOv4-Mobilenet网络精度的前提下,相较于原算法FPS提升200%、模型参数减少82%。改进后的模型平均每秒可检测67张图片,可以胜任实际应用中的口罩佩戴检测任务,结果表明该模型检测效果好、鲁棒性较强。  相似文献   

20.
在驾驶场景中,针对行人间的遮挡和尺度多变现象导致的检测精度较低、模型参数量过大和难以部署到移动端等问题,提出了一种基于YOLOv5s模型的轻量级实时行人检测模型LPD-YOLO。首先,在特征提取部分采用MES Net替换原主干网络,并在主干网络中嵌入注意力模块SA,增强网络特征提取能力;其次,在特征融合部分采用DS-ASFF结构改进原PANet,使其充分融合不同尺寸的特征图;然后,采用GS卷积代替特征融合网络中的部分标准卷积,在不影响精度的条件下,进一步减少模型参数量和计算量;最后,在预测部分使用OTA标签分配策略结合α-IOU改进原损失函数,加速模型收敛。实验结果表明,该模型相较于YOLOv5s,参数量减少了81.2%,浮点运算量降低了46.3%,模型大小减小了75.8%,检测精度提高了3.3%。单幅图像检测速度达到了13.2 ms,更好地满足了驾驶场景下密集行人的实时检测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号