首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用电子万能试验机、环-块式摩擦试验机和扫描电子显微镜等分析表征手段,考察了针状硅灰石与石墨(Gr)和Cr2O3并用对聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响。结果表明,随着硅灰石含量的增加,PTFE/硅灰石复合材料的磨损率逐渐降低,而摩擦系数呈现出先降低后增加的趋势。在15%(质量分数,下同)硅灰石的基础上添加10%Gr时,复合材料的磨损率降低到0.22×10-5 mm3/(N·m),摩擦系数略有增大。进一步添加1%Cr2O3代替相应含量的Gr时,PTFE/硅灰石/Gr/Cr2O3复合材料表现出最低的磨损率,仅有0.13×10-5 mm3/(N·m),对应的摩擦系数为0.25。磨损机理分析表明:适量硅灰石在摩擦过程中起到了较好的支撑载荷作用,阻止了对偶上微凸体对摩擦表面的嵌入;在此基础上继续添加9%Gr和1%Cr2O3时,对偶上形成了非常致密完整、薄且均匀的转移膜,表现为轻微的磨粒磨损特征。  相似文献   

2.
为了改善传统均苯四甲酸酐(PMDA)–4,4′-二胺基二苯醚(ODA)型聚酰亚胺(PI)的摩擦性能,分别以共聚和共混两种方式,引入柔性二胺单体芳香杂环二胺(DAMI),从分子结构制备不同ODA/DAMI物质的量之比的共聚和共混改性PI。并用摩擦磨损试验机、扫描电子显微镜、万能试验机以及X射线衍射仪等分析共聚和共混改性PI的结构和性能。结果表明,当ODA/DAMI物质的量之比分别为3∶1和5∶1时,共聚和共混改性PI具有最优的综合摩擦磨损性能,摩擦系数分别为0.273和0.280,磨损率分别为9.28×10–14,11.2×10–14 m3/(N·m)。共聚改性PI的摩擦系数随摩擦时间的增加变化比较稳定,其在兼顾磨损率和摩擦系数方面比共混改性PI更具优势。共聚和共混法改性PI磨损机理相似,主要为粘着磨损、磨粒磨损和疲劳磨损。随DAMI含量增加,两种改性PI的拉伸强度、拉伸弹性模量和玻璃化转变温度均呈下降趋势,当DAMI含量较高时,两种改性PI结晶取向增加,磨损率急剧升高。  相似文献   

3.
将废弃线缆料聚氯乙烯(PVC)和氯化聚乙烯(CPE)进行机械粉碎预处理,通过转矩流变仪制备复合材料,使用平板硫化机和微型注射机制出废弃PVC/CPE复合材料样条。利用立式电子万能试验机、电热恒温鼓风干燥箱、摩擦磨损试验机测试复合材料的拉伸、热老化和摩擦磨损性能,通过场发射扫描电镜(SEM)观察复合材料拉伸断面、磨损表面微观形貌。结果表明:当CPE添加量为3%时,拉伸强度达到最大(14.22 MPa),比废弃PVC提升了15.23%;摩擦系数达到最小(0.353),比废弃PVC降低了26.15%;比磨损率达到最小(32.78 mm3/(N·m)),比废弃PVC降低了63.65%。因此,添加适当的CPE能够提升复合材料的拉伸强度,降低材料的摩擦系数和比磨损率,复合材料磨损机制主要为疲劳磨损。  相似文献   

4.
在四球摩擦磨损实验机摩擦区域添加了直流磁场发生装置,研究了添加经修饰的纳米WS2润滑油在直流磁场作用下的摩擦磨损性能,用扫描电镜(SEM)配合能谱仪(EDS)及X射线光电子能谱仪(XPS)对钢球磨斑区域表面形貌和典型元素的含量及化学状态进行了分析,并探讨了相关的摩擦学机理。实验结果表明:经修饰后的纳米WS2在150SN基础油中稳定性良好,含纳米WS2的润滑油体现出更好的润滑性能,在纳米WS2含量相同时,直流磁场下的润滑油抗磨减摩效果更好。直流磁场对纳米WS2有一定的聚集效应,并会提高摩擦化学反应发生的概率。  相似文献   

5.
研究了超细氧化钛纤维对PEEK摩擦磨损、耐热和结晶性能的影响,并与nano-TiO2粒子增强PEEK作对比,探讨了相关作用机理。结果表明:与nano- TiO2微粒相比,超细TiO2纤维具有更强的显微补强、显微耐磨作用,填充超细TiO2纤维的PEEK表现出更好的减摩耐磨特性和耐热性能。无论在较低载荷还是较高载荷下,超细TiO2纤维/PEEK复合材料的摩擦系数和磨损率均低于nano- TiO2/PEEK复合材料,且其磨损面、对偶面更加平整光滑。载荷200 N时,5%~10%相似文献   

6.
以丁腈橡胶改性酚醛树脂为基体,芳纶/玻纤/钢/铜纤维混杂制备摩擦材料,在干摩擦条件下通过摩擦磨损试验机测试其摩擦学性能,并用扫描电镜(SEM)对摩擦材料的表面磨损形貌进行观察分析,研究不同混杂纤维成分对摩擦材料性能的影响。结果表明,滑动速率增大,材料的摩擦系数、磨损率均减小;实验载荷增大,材料的摩擦系数、磨损率呈现波动状态,未见明显变化趋势。摩擦过程中,含有四种混杂纤维的材料磨损形式为犁沟和塑性变形;未含有芳纶/玻纤混杂纤维的材料磨损形式主要为疲劳磨损;未含有钢/铜混杂纤维的材料磨损形式主要为黏着磨损。由此可见,添加混杂纤维可以有效提高材料的摩擦系数,降低磨损率,并且明显改善材料的摩擦学性能。  相似文献   

7.
采用热模压成型方法制备了玄武岩纤维增强、多元填料改性的热固性聚酰亚胺复合材料,研究了复合材料的组织结构、摩擦磨损性能与磨损机制。结果表明:所制备的多元复合材料组织致密,玄武岩纤维和各填料分散均匀,硬度明显高于纯聚酰亚胺(PI)和玄武岩纤维改性聚酰亚胺(BF/PI)。摩擦磨损实验结果表明,多元复合材料具有优良的耐磨性能和摩擦稳定性,摩擦系数明显低于PI和BF/PI,磨损率分别较纯PI试样和BF/PI试样低约50.3%和19.9%。  相似文献   

8.
为探究玄武岩纤维在树脂基摩擦材料中的应用,采用热模压工艺制备了玄武岩纤维质量分数为0~20%的树脂基复合材料,对其进行摩擦磨损性能试验,并检测硬度和抗剪强度,观察磨损表面微观形貌,探讨其磨损机制。结果表明:向树脂基摩擦材料中添加玄武岩纤维,具有显著提高材料的硬度、抗剪强度,降低磨损率,增大摩擦系数和热衰退温度的作用。玄武岩纤维增强的摩擦材料硬度越高,摩擦系数越大,剪切强度和硬度越高,磨损率越小;当玄武岩纤维含量为15%时,磨损率最低,达到0.23 cm~3/(N·m);当玄武岩纤维含量为20%时,摩擦系数最大,达到0.45。玄武岩纤维增强的树脂基摩擦材料,其磨损机理以磨粒磨损为主。  相似文献   

9.
为探究高熵碳化物陶瓷作为耐磨部件在摩擦学领域中的应用前景,以金属碳化物为原料,通过高能球磨和两步热压烧结法制备了一种元素分布均匀、无偏聚和偏析的高熵(Ti VTaMoW)C 陶瓷。研究了(Ti VTaMoW)C 与 Al2O3、Si C 和 Si3N43 种配副材料在室温及 800 ℃条件下的摩擦磨损特性。结果表明:室温条件下,(Ti VTa Mo W)C 与 3 种配副对摩均表现出优异的摩擦学性能,尤其与 Si C 对摩具有最低的摩擦系数和磨损率,分别可低至(0.38±0.01)和(1.52±0.36)×10–7 mm3/(N·m)。800 ℃条件下,(Ti VTa Mo W)C 表面氧化严重,磨损明显加剧,磨损率上升至 10–4 mm3/(N·m)数量级。高温氧化生成的 Mo O3和 V2O5具有较低剪切强度,摩擦过程转移至配副球接触面上形成转...  相似文献   

10.
借助控制变量法探究石墨烯含量对酚醛树脂基摩擦材料性能的影响,采用一次热压成型技术制备石墨烯改性酚醛树脂基摩擦材料试样,利用洛氏硬度计、剪切强度试验机和定速式摩擦试验机分别检测其硬度、内剪切强度和摩擦磨损性能,分析石墨烯含量与摩擦材料相关性能的变化规律。研究表明,石墨烯含量0.3%试样综合性能最优,随着石墨烯含量增加其硬度和摩擦系数稳定性逐步提高,但石墨烯含量0.4%试样硬度会超过酚醛树脂的适宜硬度范围;中高温阶段含石墨烯的摩擦材料摩擦系数低于不含石墨烯试样但磨损率有所增加,石墨烯含量0.2%试样摩擦系数和磨损率最高,其值为0.344和0.309×10~(-7) cm~3/(N·m);酚醛树脂基摩擦材料的内剪切强度会因各组分材料的黏接性能减弱而降低。  相似文献   

11.
以聚四氟乙烯(PTFE)为增强相,加入不同含量的玻璃纤维(GF),通过注塑成型方式,制备PEEK/PTFE复合材料,使用力学试验机进行拉伸试验,利用摩擦试验机进行表面摩擦试验,利用白光仪对磨痕数据和三维形貌进行观测,使用扫描电子显微镜对磨痕进行观测与分析。结果表明:当GF含量越高,复合材料最大应力越高,应力增大的斜率越明显。当GF含量增至30%,复合材料的最大应力提高至183 MPa。当GF含量逐渐升高,复合材料表面的摩擦系数降低。当GF含量为30%,复合材料的摩擦系数降至0.08。当GF含量为0、15%、30%,复合材料磨损率分别为3.59×10-6、2.30×10-6、1.78×10-6 mm3/(N·m)。GF含量越高,复合材料的硬度越高,耐磨损性能越好。  相似文献   

12.
采用多壁碳纳米管(MWCNTs)对丙烯酸聚硅氧烷树脂(APR)进行无机纳米材料改性,分析MWCNTs对APR复合涂层摩擦学性能的影响。采用高压无气喷涂的方式制备不同含量的MWCNTs/APR复合涂层,利用摩擦磨损试验机进行摩擦磨损试验,利用扫描电子显微镜(SEM)、白光干涉仪对摩擦试验后的复合涂层进行形貌表征,研究不同含量MWCNTs对复合涂层耐磨损机理的影响。实验结果表明,在室温、载荷5 N、时间5 min、频率1 Hz的摩擦环境下,MWCNTs含量为1.0%时,磨痕宽度与深度达到最低,其值分别为0.606 4 mm、10.966 3μm,与纯APR复合涂层相比,分别降低了17.06%、30.06%;除此以外,磨损率也达到最低,其值为0.939 mm3/(N·m),与纯APR复合涂层相比,降低了33.8%。  相似文献   

13.
将硼酚醛树脂(BPR)与普通酚醛树脂(PF)熔融共混,再加入经过碱处理的剑麻纤维(SF),通过模压成型工艺制备BPR/SF/PF复合材料。利用定速式摩擦试验机和电子万能试验机研究了BPR含量对复合材料摩擦磨损性能及力学性能的影响,采用扫描电镜观察了复合材料磨损表面的形貌。结果表明:在BPR/PF=50/100时,与普通PF/SF复合材料相比,BPR/SF/PF复合材料在300℃下的磨损率降低了42%,冲击强度提高了14%,弯曲强度和弯曲模量分别提高了25%和36%;复合材料磨损面形貌显示,加入BPR后,复合材料由疲劳磨损转变为磨粒磨损。  相似文献   

14.
利用自行合成的端基为环氧基的热致性环氧液晶(LCE)与酚醛树脂(PF)通过熔融挤出进行原位复合制备了LCE/PF复合材料。研究了LCE含量对LCE/PF复合材料力学性能、硬度及摩擦性能的影响,使用扫描电子显微镜(SEM)观察了复合材料的磨损面形貌,分析了复合材料的摩擦磨损机理。研究结果表明:LCE含量为2.5%时,摩擦系数比未加LCE的稳定,力学性能也有所提高;在各温度下,LCE含量为7.5%的复合材料的体积磨损率比未加LCE的复合材料的小达,到了GB 5763—2008的要求。  相似文献   

15.
以2,3',4,4'-联苯四酸二酐、4,4'-二氨基二苯甲烷和4-苯乙炔基苯酐为原料合成聚酰亚胺(PI)树脂,采用红外光谱对其结构进行了表征。采用SiO_2为耐磨改性剂,对聚酰亚胺进行改性,制备PI/SiO_2复合材料,研究其摩擦磨损性能,结果表明当SiO_2含量为10%时,PI/SiO_2复合材料具有较好的摩擦磨损性能,摩擦系数为0.145,磨损量为3.8mg。  相似文献   

16.
采用模塑成型法制备氰酸酯树脂(CE)/纳米碳化硅(nm-SiC)复合材料,通过磨损率和摩擦系数测试探讨了nm-SiC对CE耐磨性能的影响,并通过扫描电子显微镜(SEM)分析探讨了其磨损机理。结果表明,nmSiC的质量分数为1.00%时,CE/nm-SiC复合材料的磨损率最低,相对于纯CE降低了51.16%,稳定摩擦系数降低了17.95%,磨损机理为轻度磨粒磨损和犁沟磨损。  相似文献   

17.
王晓东  朱鹏  王伟  王筱  黄培  时钧 《塑料工业》2005,33(2):65-67
根据气体压缩机阀片的要求,制备了碳纤维(CF)和二硫化钼(MoS2)填充热塑性聚酰亚胺(PI)复合材料;研究了不同组成材料的力学性能、摩擦性能,考察了载荷对材料摩擦性能的影响,观察了材料磨损面形貌,并对磨损面进行了元素分析。结果表明:通过填充碳纤维,可以有效增强聚酰亚胺材料的强度;填充MoS2后,材料的力学性能有所下降,但可有效提高材料的极限PV值;随载荷增加,材料的磨损率及摩擦系数都不断减小;该材料适于作高压气体压缩机构件。  相似文献   

18.
对3种不同共聚结构的聚对苯二甲酰己二胺(PA6T)树脂——聚对苯二甲酰己二胺/己内酰胺(1132)、聚对苯二甲酰己二胺/己二酰己二胺(M21)和聚对苯二甲酰己二胺/己二酰己二胺(1252)以及其聚四氟乙烯(PTFE)复合材料在干摩擦条件下的摩擦磨损性能进行了研究,并使用扫描电子显微镜(SEM)对试样的磨损面进行了分析。结果表明,1252的摩擦磨损性能最好,M21次之,1132最差;PTFE的加入提高了3种树脂的摩擦磨损性能,其中对1252的摩擦磨损性能改善最大,当PTFE含量为30份(质量份,下同)时,其摩擦因数和磨损率分别降低到了0.16和1.00×10-6;磨损机理方面,1132的磨损方式主要表现为粘着磨损和疲劳磨损,而M21和1252的主要磨损方式表现为磨粒磨损;随着PTFE含量的增加,复合材料的主要磨损方式均转变为粘着磨损。  相似文献   

19.
竹炭/碳纤维增强树脂基摩擦材料摩擦磨损性能   总被引:1,自引:0,他引:1  
采用腰果壳油改性酚醛树脂和丁腈橡胶为粘结剂,具有高弹性模量和高强度的碳纤维为增强纤维,竹炭、重晶石和蛭石等为填料,采用热压成型工艺制备树脂基摩擦材料,研究了竹炭含量对摩擦材料的剪切强度、密度和摩擦磨损性能的影响,借助扫描电镜观察磨损表面形貌并分析磨损机理。结果表明:随着竹炭含量的增加,材料的剪切强度和密度相应减少;添加竹炭能明显提升在250℃和350℃下的摩擦系数,对于100℃下的摩擦系数影响较小;增加竹炭含量,材料的磨损率逐渐变大,磨损机制由单一磨粒磨损向黏着磨损和磨粒磨损的复合磨损机制转变。  相似文献   

20.
石墨/铜粉改善双马来酰亚胺复合材料摩擦性能   总被引:1,自引:0,他引:1  
采用层压成型制备了2类改性双马来酰亚胺纤维复合材料,分别考察了石墨、铜粉的用量对纤维复合材料摩擦性能(摩擦系数,磨损率)和力学性能的影响,并用扫描电镜对复合材料的磨损表面形貌进行了分析。结果表明:石墨对改善双马来酰亚胺的摩擦磨损性能较铜粉更有效。石墨的质量分数为3%时,复合材料的摩擦磨损性能和力学性能达到最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号