首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present work aims to evaluate the performance characteristics of a vapor compression refrigeration system using R-438A as a retrofit refrigerant for R-22. In order to achieve this objective, a test facility is developed and experiments are performed over a wide range of chilled water inlet temperature (11:20 °C), condenser water inlet temperature (25:35 °C) and condenser water mass flow rate (363:543 kg h−1). Results showed that as the chilled water inlet temperature changes from 11.5 to 20.5 °C, system COP increases from 1.78 to 2.07 at constant condenser water inlet temperature of 25.5 °C. Cooling capacity and COP of the system using R-438A are lower than R-22 by 11% and 12.5%, respectively. However, compressor discharge temperature using R-438A is slightly lower than R-22 which confirms that R-438A can be used as a retrofit refrigerant for R-22 to complete the remaining life time of the existing plants.  相似文献   

2.
A new type of oil-free moving magnet linear compressor with clearance seals and flexure springs has been designed for incorporation into a vapour compression refrigeration system with compact heat exchangers for applications such as electronics cooling. A linear compressor prototype was built with a maximum stroke of 14 mm and a piston diameter of 19 mm. An experimental apparatus was built to measure the compressor efficiencies and coefficient of performance (COP) of a refrigeration system with the linear compressor, using R134a. The resonant frequency for each operating condition was predicted using the discharge pressure, suction pressure and stroke. Refrigeration measurements were conducted for different strokes under each pressure ratio with a fixed condenser outlet temperature of 50 °C and evaporator temperature ranging from 6 °C to 27 °C. The results show that the COPs are around 3.0 for tests with a pressure ratio of 2.5 (evaporator temperature of 20 °C).  相似文献   

3.
In this study, a CO2 transcritical cycle model without imposing any excessive constraints such as fixed discharge pressure and suction pressure is developed. The detailed geometrical variation of the gas cooler and the evaporator have been taken into account. The model is validated with the experimental measurements. Parametric influences on the CO2 system with regard to the effect of dry bulb temperature, relative humidity, inlet water temperature, compressor speed, and the capillary tube length are reported. The COP increases with the dry bulb temperature or the inlet relative humidity of the evaporator. Despite the refrigerant mass flowrate may be increased with the inlet water temperature, the COP declines considerably with it. Increasing the compressor speed leads to a higher heating capacity and to a much lower COP. Unlike those of the conventional sub-critical refrigerant, the COP of the transcritical CO2 cycle does not reveal a maximum value against the capillary tube length.  相似文献   

4.
为解决传统数据中心空调系统能耗高和冷却效率低等问题,本文提出了带有蒸发式冷凝器的制冷剂泵驱动热管与蒸气压缩复合数据中心空调系统,实验分析了不同室外温度与冷凝器风速下系统的运行性能.结果表明:在热管模式下,当室外温度低于0℃时,降低冷凝器风速能够提升系统COP;当室外温度高于0℃时,增大室外机风速能够提高系统节能性.降低...  相似文献   

5.
This paper studies the influence of working fluids over the performance of heat driven ejector refrigeration systems performance by using a lumped parameter model. The model used has been selected after a comparison of different models with a set of experimental data available in the literature. The effect of generator, evaporator and condenser temperature over the entrainment ratio and the COP has been investigated for different working fluids in the typical operating conditions of low grade energy sources. The results show a growth in performance (the entrainment ratio and the COP) with a rise in the generator and evaporator temperature and a decrease in the condenser temperature. The working fluids have a great impact on the ejector performance and each refrigerant has its own range of operating conditions. R134a is found to be suitable for low generator temperature (70–100 °C), whereas the hydrocarbons R600 is suitable for medium generator temperatures (100–130 °C) and R601 for high generator temperatures (130–180 °C).  相似文献   

6.
The prototype of an air-cooled double-lift NH3–H2O absorption chiller driven by hot water at low temperature is presented. The main objective of the study is to illustrate the experimental performances of the prototype under different operating conditions. A mathematical model of the cycle is developed, along with a procedure for the identification of otherwise difficult to measure data, with the purpose of providing the complete picture of the internal thermodynamic cycle. The combined experimental and numerical data allowed assessing the effects on the thermodynamic cycle with varying operating conditions. The unit operated steadily with chilled water inlet 12 °C, outlet 7 °C, air temperature between 22 °C and 38 °C, and hot water driving temperatures between 80 °C and 90 °C. The reference cooling capacity at air temperature of 30 °C is 2.5 kW, with thermal COP about 0.3 and electrical COP about 10.  相似文献   

7.
Experimental results of local heat transfer coefficients for the boiling of working fluids (solutions of R600a with mineral naphthenic oil ISO VG 15) in a smooth tube with a small diameter (5.4 mm) are presented. The experiments have been performed in the following ranges: for the inlet pressure from 65.7 kPa to 82.2 kPa, for the heat flux from 2500 to 3300 W m−2, and for the mass velocity of the working fluid from 11.90 to 15.99 kg m−2 s−1). The quantitative estimation in reduction of the heat transfer coefficient of the wetted surface in the evaporator at a high oil concentration in the mixture is examined. The influence of heat flux and mass velocities on the values of the local heat transfer coefficients is analyzed. The equation for the modelling of the local heat transfer coefficient for boiling of an isobutane/compressor oil solution flow in the tube is suggested.  相似文献   

8.
Humidification–dehumidification (HDH) desalination works based on a water cycle principle and involves air humidification and condensation (dehumidification). The cooling of humid air with chilled water increases the desalination and results in cold air suitable for air conditioning process. The merits of the proposed HDH desalination and cooling are not analyzed and compared in the literature. Therefore, the performance results of HDH with normal water (current technology) and HDH with chilled water (proposed idea) are compared to highlight the merit of this cycle. The combined cycle for desalination and cooling has been solved thermodynamically with psychrometric properties. The results are validated with a laboratory experimental setup. The examined operational process conditions are hot water inlet temperature, efficiency of humidifier, and vapor absorption refrigerator's (VAR's) evaporator exit temperature. The focused results are desalination, cooling and energy utilization factor (EUF). The comparative study recommends the use of chilled water in the final stage. The two stage desalination with dehumidification by normal water in the first stage and chilled water in combined two stages improves the cycle EUF from 0.18 to 0.33. Out of 300 W of cooling generation, 100 W is used for dehumidification and the remaining 200 W is available for air conditioning process at 15 N⋅m3 h−1 of air.  相似文献   

9.
Blends of CO2 with ten low-global warming potential (GWP) working fluids are evaluated for use in a heat pump water heater. The effects that the discharge pressure, component ratio, hot-water outlet temperature and chilled water inlet temperature have on the coefficient of performance (COP) of heat pump are analyzed when the pinch point of the heat exchange is considered. It is found that temperature glide of zeotropic mixture has a good thermal match with the temperature change of water as two pinch points appear in the gas cooler/condenser or evaporator. The good thermal match in the heat exchangers promotes the system COP. Addition of low-GWP working fluids to pure CO2 can reduce the high-side pressure. The results show that CO2/R41 and CO2/R32 are suitable candidates for heat pump water heaters because of their high COP and low high-side pressure in comparison with those of a pure CO2 cycle.  相似文献   

10.
A model was presented to determine product air properties of dew-point indirect evaporative coolers with cross flow heat exchanger, M-cycle CrFIEC. In this regard, the most powerful statistical method known as the group method of data handling-type neural network (GMDH) was employed. Then the developed GMDH model was implemented for multi-objective optimization of a prototype CrFIEC and the average annual values of coefficient of performance (COP) and cooling capacity (CC) were maximized, simultaneously, while working to air ratio (WAR) and inlet air velocity were decision variables of optimization. Accordingly, features of the proposed system were optimized at twelve diverse climates of the world based on Koppen–Geiger's classification. Results implied that the optimized inlet air velocity for all climates varied between 1.796 and 1.957 m.s−1, while the optimum WAR was 0.318 for “A” class cities. Moreover, the mean values of the COP and CC were improved 8.1% and 6.9%, respectively.  相似文献   

11.
Thermoelastic cooling is a recently proposed, novel solid-state cooling technology. It has the benefit of not using high global warming potential (GWP) refrigerants which are used in vapor compression cycles (VCCs). Performance enhancements on a thermoelastic cooling prototype were investigated. A few novel design options aiming to reduce the cyclic loss were proposed. It was found that the maximum temperature lift increased from 6.6 K to 27.8 K when applying the proposed novel designs, corresponding to 0–152 W cooling capacity enhancement evaluated under 10 K water–water system temperature lift. In addition, a multi-objective optimization problem was formulated and solved using the genetic algorithm to maximize the system capacity and coefficient of performance (COP). With all the novel designs, the optimization could further enhance 31% COP, or 21% cooling capacity, corresponding to COP of 4.1 or 184 W maximum cooling capacity.  相似文献   

12.
Thermal characteristics of a plate evaporator using ammonia are experimentally investigated. The effects of mass flux, heat flux, channel height, and saturation pressure on heat transfer coefficient of the evaporator are discussed. The experiments are conducted for mass flux (5 and 7.5 kg m−2 s−1), heat flux (10, 15, and 20 kW m−2), channel height (1, 2, and 5 mm), and saturation pressure (0.7 and 0.9 MPa). Heat transfer coefficient is obtained as a function of quality for all experimental conditions. The characteristics of heat transfer coefficient are discussed and compared with those of earlier works. All experimental results are compiled by using Lockhart–Martinelli parameter. The developed empirical correlation predicts 85% of the experimental data within ±30% range.  相似文献   

13.
利用焓差法空调器性能实验台对一台风冷空调器的变工况性能进行实验研究,得出了蒸发器迎面风速、冷凝器迎面风速对蒸发压力、冷凝压力、过冷度、过热度、制冷量和COP的变化曲线,以及蒸发器、冷凝器进口空气温度对制冷量和COP的影响规律。  相似文献   

14.
A single-stage vapour absorption refrigeration system (VARS) is tested with monochlorodifluoromethane (HCF22) as refrigerant and different absorbents: dimethylether of tetraethylene glycol (DMETEG) and dimethyl acetamide (DMA). The influence of generator temperatures in the range 75–95°C, which represents low-grade heat sources, is studied. Cooling water temperatures were varied between 20 and 30°C. Two cases of cooling water flow paths are considered, i.e. water entering either absorber or condenser, which are connected in series. For HCFC22-DMETEG, COP values in the range 0.2–0.36 and evaporator temperatures between 0 and 10°C are obtained. For HCF22-DMA, COP values in the range 0.3–0.45 and evaporator temperatures between −10 and 10°C are obtained. It is observed that HCFC22-DMETEG can work at lower heat source temperatures than HCFC22-DMA. However, at the same operating conditions HCFC22-DMA is better from the viewpoints of circulation ratio and COP. Experiments also show that at low heat source temperature, cooling water temperature has strong influence on circulation ratio but does not affect COP significantly. Preferably, cooling water should first flow through the condenser and then through the absorber in order to achieve improved overall performance.  相似文献   

15.
Solar liquid collector/regenerator (C/R), combining the functions of solar collector and regenerator of absorbent solution together, can be effectively utilized in solar energy-driven liquid desiccant cooling systems. Based on thermal balance of the glazing of solar C/R, a group of modified heat and mass transfer models, validated by experimental results to reflect solution regeneration process more truly, were put forward in this paper. Numerical simulation showed only preheating air stream, keeping an equal humidity ratio, did raise the performance of solar C/R, but preheating solution increased the regeneration efficiencies to reach twice that of preheating air stream. There occurred optimum mass flow rates for both air stream and solution film reaching 36–48 kg m−1 h−1 and 4∼6 kg m−1 h−1 respectively for solar C/Rs of 3∼6 m long. As for effect of the length of solar C/Rs, the regeneration efficiency ηr reached a maximum value at about 4 m and shorter or longer solar C/Rs failed to increase solution regeneration efficiencies.  相似文献   

16.
R1234ze(E) has a GWP<1 and a normal boiling temperature approximately 7.3 °C lower than that of R134a; it represents an interesting candidate for its replacement as working fluid in refrigerating machines. The refrigerant charge minimization in refrigerating and air conditioning equipment is a key issue for the new environmental challenges. Mini microfin tubes represent an optimal solution for both heat transfer enhancement and charge minimization tasks. This paper presents an experimental study of R1234ze(E) flow boiling inside a mini microfin tube with internal diameter at the fin tip of 3.4 mm. The experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m−2 s−1 and 940 kg m−2 s−1, the vapour quality from 0.2 to 0.99 at three different heat fluxes: 10, 25, and 50 kW m−2. The experimental results are then compared with those obtained for the more traditional R134a.  相似文献   

17.
A silica gel-water adsorption chiller driven by low-grade heat is developed. System configuration without any vacuum valves includes two sorption chambers, a 4-valve hot/cooling water coupled circuit and a 4-valve chilled water circuit. Each sorption chamber is composed of one adsorber, one condenser and one evaporator. The design of this chiller, especially the design of modular adsorber, is suitable for low-cost industrial production. Efficient and reliable heat and mass recovery processes are also adopted. This chiller is tested under different conditions and it features the periodic variations of temperatures and cooling power. Through the experimental study, the optimal cooling time, mass recovery time and heat recovery time are 720 s, 40 s and 24 s, respectively. Besides, the obtained cooling power, COP and SCP are 42.8 kW, 0.51 and 125.0 W kg−1, respectively, under typical conditions of 86/30/11 °C hot water inlet/cooling water inlet/chilled water outlet temperatures, respectively.  相似文献   

18.
This paper presents a numerical analysis of the performance of a fin-tube type adsorption chiller associated with heat and mass transfer mechanisms. A two-dimensional axisymmetric transient model is developed and 10 parameters are used to investigate their effects on the performance of an adsorption chiller and to obtain the optimized conditions of a fin-tube type adsorption chiller. Ten parameters found in many other studies, such as fin pitch, fin thickness, fin height, diffusion coefficient, particle size, cycle time, cycle ratio, temperature of hot water, fluid velocity and porosity, are used in this study. Based on the design of experiment, an orthogonal array of 10 parameters with three levels, L27(313) is used for the analysis of variance (ANOVA) and through this method, each parameter's level of contribution is carefully examined. The result shows that fin thickness and the temperature of hot water are the dominant parameters for COP and SCP, respectively. The optimum conditions having the highest COP of 0.6782 and SCP of 217.68 W kg−1 are found through the result.  相似文献   

19.
板式蒸发式冷凝器传热传质的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
根据能量守恒和质量守恒定律,对板式蒸发式冷凝器中制冷剂、冷却水与空气之间的传热传质过程,建立了热质交换过程的二维数学模型,由此分析板式蒸发式冷凝器中冷却水温度、空气温度和空气含湿量等参数的分布规律,以及空气流速、干湿球温度、冷却水喷淋密度和冷凝温度对板式蒸发式冷凝器热流密度的影响,并将模拟结果通过实验进行了验证,两者之间的误差在10%以内。研究表明:板式蒸发式冷凝器的热流密度随进口空气流速的增加而增大,随湿球温度的升高而减小,几乎不受进口空气干球温度的影响;热流密度随着冷却水喷淋密度的增加逐渐增大,但增大至一定量后不再对热流密度有明显影响;冷凝温度越高,其热流密度越大。上述结论对板式蒸发式冷凝器的优化设计具有指导意义。  相似文献   

20.
This paper evaluates performance merits of CO2 and R134a automotive air conditioning systems using semi-theoretical cycle models. The R134a system had a current-production configuration, which consisted of a compressor, condenser, expansion device, and evaporator. The CO2 system was additionally equipped with a liquid-line/suction-line heat exchanger. Using these two systems, an effort was made to derive an equitable comparison of performance; the components in both systems were equivalent and differences in thermodynamic and transport properties were accounted for in the simulations. The analysis showed R134a having a better COP than CO2 with the COP disparity being dependent on compressor speed (system capacity) and ambient temperature. For a compressor speed of 1000 RPM, the COP of CO2 was lower by 21% at 32.2°C and by 34% at 48.9°C. At higher speeds and ambient temperatures, the COP disparity was even greater. The entropy generation calculations indicated that the large entropy generation in the gas cooler was the primary cause for the lower performance of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号