首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonia is a naturally occurring environment friendly refrigerant with attractive thermo-physical properties. Experimental investigation of heat transfer and pressure drop during steady state evaporation of ammonia in a commercial plate heat exchanger has been carried out for an un-symmetric 30°/60° chevron plate configuration. Experiments were conducted for saturation temperatures ranging from −25 °C to −2 °C. The heat flux was varied between 21 kW m−2 and 44 kW m−2. Experimental results show significant effect of saturation temperature, heat flux and exit vapor quality on heat transfer coefficient and pressure drop. Current mixed plate configuration data are compared with previous studies on the same heat exchanger with symmetric plate configurations. This comparison highlighted importance of optimization in selection of the heat exchangers. Correlations for two phase Nusselt number and friction factor for each chevron plate configuration considered are developed. A Nusselt number correlation generalized for a range of chevron angles is also proposed.  相似文献   

2.
Lubrication oil used in refrigerant compressors forms oil mist in the compressor shell. Some of the oil mist is discharged into a refrigeration cycle with refrigerant and causes degradation of heat transfer in heat exchangers. Since the generation of the oil mist is related to the Weber number, it is necessary to measure the surface tension of the oil/refrigerant mixture before discussing the oil mist generation in the compressor. In this study, the maximum bubble pressure method was adapted to measure the surface tension of PAG (polyalkylene glycol) oil/CO2 mixture. The density of the mixture needed for the measurement was also carried out. It was found that the surface tension of PAG/CO2 mixture sharply decreases with an increase in the concentration of the refrigerant in the mixture. The surface tension of the mixture under 10 MPa and 100 °C is estimated to be 14.6 mN m−1 by an extrapolation.  相似文献   

3.
In this study, nucleate boiling heat transfer coefficients (HTCs) of HFO1234yf HFC134a are measured on a flat plain, Turbo-B, Turbo-C, and Thermoexcel-E surfaces. All data are taken at the liquid pool temperature of 7 °C on small flat horizontal square copper plates (9.53 mm × 9.53 mm) at heat fluxes from 10 kW m−2 to 200 kW m−2 with an interval of 10 kW m−2. Test results show that nucleate boiling HTCs of HFO1234yf on all four surfaces are similar to those of HFC134a at all heat fluxes tested in this study. At heat fluxes below 150 kW m−2, Thermoexcel-E surface shows the highest heat transfer performance and hence is the best surface for the manufacture of the evaporators in refrigeration and air-conditioning equipment. On the other hand, at high heat fluxes above 150 kW m−2, Turbo-B and Turbo-C show better heat transfer performance than Thermoexcel-E and hence are good for electronic cooling applications. Overall, HFO1234yf is a good long term candidate with excellent environmental properties to replace successfully HFC134a from the view point of pool boiling heat transfer. Hence HFO1234yf can be readily applied to the conventional evaporators designed for HFC134a.  相似文献   

4.
The use of carbon dioxide as alternative refrigerant in refrigeration plants and heat pumps has been focused recently. Through the specific properties of CO2, the use of very compact heat exchangers is relevant and the technology of micro-channel heat exchangers rises as a suitable solution. The experimental investigation of CO2 flow in a single micro-channel with an inner diameter of 529 μm is planned with an original test section. This test section is initially dedicated for further CO2 two-phase flow analysis. The local heat transfer coefficients are estimated with micro-thermocouples stuck on the micro-channel wall. The pressure drop is also measured. This paper presents the first results in single-phase pressure drop and heat transfer and exhibits promising coming data in two-phase flow pressure drop and heat transfer for mass velocity between 200 kg/m2/s and 1400 kg/m2/s and working saturation temperature between −10 °C and 5 °C. The results stress on the good accuracy of suitable classical laws to predict pressure drop and heat transfer in single-phase flow in micro-channel.  相似文献   

5.
In this research, the cooling heat transfer coefficient and pressure drop of supercritical CO2 with PAG-type lubricating oil entrained were experimentally investigated. The inner diameter of the test tubes ranged from 1 to 6 mm. The experiments were conducted at lubricating oil concentrations from 0 to 5%, pressures from 8 to 10 MPa, mass fluxes from 200 to 1200 kg m−2 s−1, and heat fluxes from 12 to 24 kW m−2.In comparison to the oil-free condition, when lubricating oil entrainment occurred, the heat transfer coefficient decreased and the pressure drop increased. The maximum reduction in the heat transfer coefficients—about 75%—occurred in the vicinity of the pseudocritical temperature. The influence of oil was significant for a small tube diameter and a large oil concentration. From visual observation, it was confirmed that this degradation in the heat transfer was due to the formation of an oil-rich layer along the inner wall of the test tube. However, when the oil concentration exceeded 3%, no further degradation in the heat transfer coefficient could be confirmed, which implies that the oil flowing along with CO2 in the bulk region does not influence the heat transfer coefficient and the pressure drops significantly. For a large tube at a lower mass flux, no significant degradation in the heat transfer coefficient was observed until the oil concentration reached 1%. This is due to the transition of the flow pattern from an annular-dispersed flow to a wavy flow for a large tube, with CO2 flowing on the upper side and the oil-rich layer on the lower side of the test section.  相似文献   

6.
The introduction of chlorine-free refrigerants to the market requires experimental investigations of their behaviour in heat pumps and refrigerators. One particular area of interest is the effect of the new oils on the heat transfer in evaporators and condensers. Oil can either increase or decrease the heat transfer coefficient. This paper presents the results from an experimental investigation of the effect of three different ester-based oils on the heat transfer of HFC134a in a horizontal evaporator. The tests were carried out at heat fluxes between 2 and 8 kW m−2 (corresponding to mass fluxes between approximately 40 and 170 kg s−1 m−2). The evaporation temperature was varied from−10 to +10°C. The global oil concentration ranged from 0 to 4.5 mass percentage based on the total liquid flow. The heat transfer coefficient decreased in most of the cases. The results indicate that the decrease seems to depend on the viscosity of the oil. The decrease can fairly well be estimated with the correlation for pure refrigerants by Shah if the viscosity of the mixture is used in the calculations. The data for the oil-contaminated refrigerant also agree well with data for pure refrigerants in a plot of αtplo* versus the inverse Martinelli-Lockhart parameter when αlo* is calculated with a modified Dittus-Boelter correlation and the mixture viscosity is used in the calculations. The heat transfer is found to increase when introducing oil in the special cases where the flow rate is low and the viscosity is low (oil A, 2 and 4 kW m−2 oil B, 6kW m−2 at +10°C). This is most likely due to surface tension effects. It has been suggested that the increased surface tension leads to a better tube wetting and thus an increased heat transfer.  相似文献   

7.
An experimental study was conducted to determine the effects of miscible lubricant oil on evaporation of ammonia in a vertical chevron plate heat exchanger. The heat exchanger was configured in a U-type counter flow arrangement with mixed (30°/60°) chevron plate configuration. Experiments were carried out for four saturation temperatures ranging from −25 °C to −2 °C for a fixed ammonia mass flux rate of 6.5 kg m−2 s−1 and over a range of heat flux levels resulting in a vapor quality at the heat exchanger exit ranging between 0.5 and 0.9. For a given saturation temperature, experiments were performed for 0%, 3%, 6% and 9% oil concentrations, by volume in ammonia. The oil concentration, exit vapor quality, heat flux and saturation temperature were found to have significant effects on the heat transfer coefficient and pressure drop of ammonia. Based on the experimental data, correlations to estimate two phase Nusselt number and friction factor, generalized for the whole range of oil concentration have been presented.  相似文献   

8.
R1234ze(E) has a GWP<1 and a normal boiling temperature approximately 7.3 °C lower than that of R134a; it represents an interesting candidate for its replacement as working fluid in refrigerating machines. The refrigerant charge minimization in refrigerating and air conditioning equipment is a key issue for the new environmental challenges. Mini microfin tubes represent an optimal solution for both heat transfer enhancement and charge minimization tasks. This paper presents an experimental study of R1234ze(E) flow boiling inside a mini microfin tube with internal diameter at the fin tip of 3.4 mm. The experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m−2 s−1 and 940 kg m−2 s−1, the vapour quality from 0.2 to 0.99 at three different heat fluxes: 10, 25, and 50 kW m−2. The experimental results are then compared with those obtained for the more traditional R134a.  相似文献   

9.
Experimental results of local heat transfer coefficients for the boiling of working fluids (solutions of R600a with mineral naphthenic oil ISO VG 15) in a smooth tube with a small diameter (5.4 mm) are presented. The experiments have been performed in the following ranges: for the inlet pressure from 65.7 kPa to 82.2 kPa, for the heat flux from 2500 to 3300 W m−2, and for the mass velocity of the working fluid from 11.90 to 15.99 kg m−2 s−1). The quantitative estimation in reduction of the heat transfer coefficient of the wetted surface in the evaporator at a high oil concentration in the mixture is examined. The influence of heat flux and mass velocities on the values of the local heat transfer coefficients is analyzed. The equation for the modelling of the local heat transfer coefficient for boiling of an isobutane/compressor oil solution flow in the tube is suggested.  相似文献   

10.
The present study focused on improving the thermal performance of CO2 evaporators while reducing their volume and thus significantly reducing the working fluid charge. To achieve this, the leading two-phase flow pattern and physically-based prediction models for flow boiling of CO2 and void fraction were selected from the literature, together with the leading air-side flow and heat transfer methods, and finally those for modelling oil effects on CO2 flow boiling. The effects of tube size, shape and wettability for significant performance improvements, miscible oil concentration, etc., were addressed while staying within the beverage industry's fabrication and operational limits. Compared to an actual existing design, the volume and refrigerant charge of the CO2 evaporator were reduced by 50% and 58.7%, respectively. The adverse influence of oil was found to reduce the mean CO2 side heat transfer coefficient and to increase the CO2 pressure drop by up to 11% and 94%.  相似文献   

11.
Optimizing the coordination structure and microscopic reaction environment of isolated metal sites is promising for boosting catalytic activity for electrocatalytic CO2 reduction reaction (CO2RR) but is still challenging to achieve. Herein, a newly electrostatic induced self-assembly strategy for encapsulating isolated Ni-C3N1 moiety into hollow nano-reactor as I-Ni SA/NHCRs is developed, which achieves FECO of 94.91% at −0.80 V, the CO partial current density of ≈−15.35 mA cm−2, superior to that with outer Ni-C2N2 moiety (94.47%, ≈−12.06 mA cm−2), or without hollow structure (92.30%, ≈−5.39 mA cm−2), and high FECO of ≈98.41% at 100 mA cm−2 in flow cell. COMSOL multiphysics finite-element method and density functional theory (DFT) calculation illustrate that the excellent activity for I-Ni SA/NHCRs should be attributed to the structure-enhanced kinetics process caused by its hollow nano-reactor structure and unique Ni-C3N1 moiety, which can enrich electron on Ni sites and positively shift d-band center to the Fermi level to accelerate the adsorption and activation of CO2 molecule and *COOH formation. Meanwhile, this strategy also successfully steers the design of encapsulating isolated iron and cobalt sites into nano-reactor, while I-Ni SA/NHCRs-based zinc-CO2 battery assembled with a peak power density of 2.54 mW cm−−2 is achieved.  相似文献   

12.
Metal-organic frameworks (MOFs) as a promising platform for electrocatalytic CO2 conversion are still restricted by the low efficiency or unsatisfied selectivity for desired products. Herein, zirconium-based porphyrinic MOF hollow nanotubes with Cd sites (Cd-PCN-222HTs) are reported for electrocatalytic CO2-to-CO conversion. The dispersed Cd species are anchored in PCN-222HTs and coordinated by N atoms of porphyrin structures. It is discovered that Cd-PCN-222HTs have glorious electrocatalytic activity for selective CO production in ionic liquid-water (H2O)-acetonitrile (MeCN) electrolyte. The CO Faradaic efficiency (FECO) of >80% could be maintained in a wide potential range from −2.0 to −2.4 V versus Ag/Ag+, and the maximum current density could reach 68.0 mA cm−2 at −2.4 V versus Ag/Ag+ with a satisfied turnover frequency of 26 220 h−1. The enhanced efficiency of electrocatalytic CO2 conversion of Cd-PCN-222HTs is closely related to its hollow structure, anchored Cd species, and good synergistic effect with electrolyte. The density functional theory calculations indicate that the dispersed Cd sites anchored in PCN-222HTs not only favor the formation of *COOH intermediate but also hinder the hydrogen evolution reaction, resulting in high activity of electrocatalytic CO2-to-CO conversion.  相似文献   

13.
Heat transfer and pressure drop characteristics of the Printed Circuit Heat Exchanger (PCHE) were investigated in an experimental supercritical CO2 loop. The inlet temperature and pressure were varied from 280 to 300 °C/2.2 to 3.2 MPa in the hot side and from 90 to 108 °C/6.5 to 10.5 MPa in the cold side while the mass flow rate was varied from 40 to 80 kg h−1. The overall heat transfer coefficient range is 300–650 W m−2 K−1 while the compactness with respect to the heat exchanger core is approximately 1050 m2 m−3. The empirical correlations to predict the local heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been proposed for the tested PCHE.  相似文献   

14.
An integrated system for simultaneous production of triple-effect cooling and single stage heating is proposed in this paper to harness low grade solar energy. The proposed system combines the heliostat field with a central receiver and the ejector-absorption cycle with the shaft power driven transcritical CO2 cycle. A parametric study based on first and second laws of thermodynamics is carried out to ascertain the effect of varying the exit temperature of duratherm oil, turbine inlet pressure, and evaporators temperature on the energy and exergy output as well as on the energy and exergy efficiencies of the system. The results obtained indicate that major source of exergy destruction is the central receiver where 52.5% of the inlet solar heat exergy is lost followed by the heliostat where 25% of the inlet exergy is destroyed. The energy and exergy efficiencies of the integrated system vary from 32% to 39% and 2.5%–4.0%, respectively, with a rise in the hot oil outlet temperature from 160 °C–180 °C. It is further shown that increase in evaporator temperature of transcritical CO2 cycle from −20 °C to 0 °C increases the energy efficiency from 27.45% to 43.27% and exergy efficiency from 2.51% to 2.97%, respectively. The results clearly show how the variation in the values of hot oil outlet temperature, turbine inlet pressure, and the evaporator temperature of transcritical CO2 cycle strongly influences the attainable performance of the integrated system.  相似文献   

15.
The electrochemical carbon dioxide reduction reaction (E-CO2RR) to formate is a promising strategy for mitigating greenhouse gas emissions and addressing the global energy crisis. Developing low-cost and environmentally friendly electrocatalysts with high selectivity and industrial current densities for formate production is an ideal but challenging goal in the field of electrocatalysis. Herein, novel titanium-doped bismuth nanosheets (Ti Bi NSs) with enhanced E-CO2RR performance are synthesized through one-step electrochemical reduction of bismuth titanate (Bi4Ti3O12). We comprehensively evaluated Ti Bi NSs using in situ Raman spectra, finite element method, and density functional theory. The results indicate that the ultrathin nanosheet structure of Ti Bi NSs can accelerate mass transfer, while the electron-rich properties can accelerate the production of *CO2 and enhance the adsorption strength of *OCHO intermediate. The Ti Bi NSs deliver a high formate Faradaic efficiency (FEformate) of 96.3% and a formate production rate of 4032 µmol h−1 cm−2 at −1.01 V versus RHE. An ultra-high current density of −338.3 mA cm−2 is achieved at −1.25 versus RHE, and simultaneously FEformate still reaches more than 90%. Furthermore, the rechargeable Zn–CO2 battery using Ti Bi NSs as a cathode catalyst achieves a maximum power density of 1.05 mW cm−2 and excellent charging/discharging stability of 27 h.  相似文献   

16.
Evaporation heat transfer experiments for two refrigerants, R-407C and R-22, mixed with polyol ester and mineral oils were performed in straight and U-bend sections of a microfin tube. Experimental parameters include an oil concentration varied from 0 to 5%, an inlet quality varied from 0.1 to 0.5, two mass fluxes of 219 and 400 kg m−2s−1 and two heat fluxes of 10 and 20 kW m−2. Pressure drop in the test section increased by approximately 20% as the oil concentration increased from 0 to 5%. Enhancement factors decreased as oil concentration increased under inlet quality of 0.5, mass flux of 219 kg m−2 s−1, and heat flux of 10 kW m−2, whereas they increased under inlet quality of 0.1, mass flux of 400 kg m−2 s−1, and heat flux of 20 kW m−2. The local heat transfer coefficient at the outside curvature of an U-bend was larger than that at the inside curvature of a U-bend, and the maximum value occurred at the 90° position of the U-bend. The heat transfer coefficient was larger in a region of 30 tube diameter length at the second straight section than that at the first straight section.  相似文献   

17.
Hydroxyapatite (HAp) crystals mimicking tooth enamel in chemical composition and morphology were formed on sulfonic-terminated self-assembled monolayer (SAM) in 1.5SBF with F at 50 °C for 7 days. F ions showed a marked effect on the composition and morphology of deposited HAp crystals. In the absence of F ions, HAp containing CO32− were formed on SAM, and worm-like crystals of 200–300 nm in length aggregated to form a spherical morphology. When F was added, HAp crystals containing both CO32− and F were formed on SAM. Needle-shaped crystals of high aspect ratio and 1–2 μm in length grew elongated along the c-axial direction. In addition, these needle-shaped crystals grew in bundles, mimicking HAp crystals in tooth enamel. After the process of ripening, the needles in bundle grew to large size of up to 10 μm in length, and still kept no crystal–crystal fusion like enamel HAp crystals. The formation of enamel-like HAp can be attributed to the substitute of F for OH by disturbing the normal progress of HAp formation on SAM. The results suggest potential applications in preparing a novel dental material by a simple method.  相似文献   

18.
The heat transfer coefficient and pressure drop during gas cooling process of CO2 (R744) in a horizontal tube were investigated experimentally. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a gas cooler (test section). The water loop consists of a variable speed pump, an isothermal tank, and a flow meter. The refrigerant, circulated by the variable-speed pump, condenses in the inner tube while water flows in the annulus. The gas cooler of tube diameter is 6000 mm in length, and it is divided into 12 subsections.The pressure drop of CO2 in the gas cooler shows a relatively good agreement with those predicted by Blasius's correlation. The local heat transfer coefficient of CO2 agrees well with the correlation by Bringer–Smith. However, at the region near Pseudo-critical temperature, the experiments indicate higher values than the Bringer–Smith correlation. Based on the experimental data presented in this paper, a new correlation to predict the heat transfer coefficient of supercritical CO2 during in-tube cooling has been developed. The majority of the experimental values are within 18% of the values predicted by the new correlation.  相似文献   

19.
The application of nanorefrigerant–oil mixture in refrigeration system requires continuous circulation of nanoparticles; however, only a small part of nanoparticles circulate by migration from the mixture to vapor within refrigerant dryout process. This study points out a more important nanoparticle circulation way by migration from bulk refrigerant–oil mixture to oil excess layer, and quantitatively evaluate the mixture-to-oil migration ratio affected by oil mass fraction, nanoparticle mass fraction and heat flux. The nanorefrigerant–oil mixture is TiO2/R141b/NM56; experimental conditions cover oil mass fraction of 5%–20%, nanoparticle mass fraction of 0.2%–1.0%, and heat flux of 10–100 kW m−2; the mixture-to-oil migration ratio is measured by absorbance method. The results show that mixture-to-oil migration ratio ranges within 0.388–0.969, and increases averagely by 51.8%, 28.3% and 8.0% with increasing oil mass fraction, reducing nanoparticle mass fraction and lowering heat flux over the whole range of present conditions, respectively.  相似文献   

20.
Experiments were performed on the convective boiling heat transfer in horizontal minichannels with CO2. The test section is made of stainless steel tubes with inner diameters of 1.5 and 3.0 mm and with lengths of 2000 and 3000 mm, respectively, and it is uniformly heated by applying an electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 20–40 kW m−2, a mass flux range of 200–600 kg m−2 s−1, saturation temperatures of 10, 0, −5, and −10 °C and quality ranges of up to 1.0. Nucleate boiling heat transfer contribution was predominant, especially at low quality region. The reduction of heat transfer coefficient occurred at a lower vapor quality with a rise of heat flux, mass flux and saturation temperature, and with a smaller inner tube diameter. The experimental heat transfer coefficient of CO2 is about three times higher than that of R-134a. Laminar flow appears in the minichannel flows. A new boiling heat transfer coefficient correlation that is based on the superposition model for CO2 was developed with 8.41% mean deviation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号