首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
采用粉末冶金法+热压工艺制备了不同Al2O3颗粒直径的1 vol%Al2O3/Cu基复合材料,使用光学显微镜和扫描电镜(SEM)观察了复合材料的显微组织,利用电子拉伸试验机测试了复合材料的力学性能。基于弹/塑性理论推导出了复合材料中颗粒周边的弹性区宽度的表达式。结果表明:Al2O3颗粒直径对Al2O3/Cu基复合材料强度及基体晶粒尺寸有着较大的影响;Al2O3颗粒直径越大,Al2O3/Cu基复合材料的抗拉强度、屈服强度越小;当Al2O3颗粒直径为5μm时,Al2O3/Cu基复合材料的抗拉强度和屈服强度分别为207和90 MPa,是铜试样的95.8%和95.7%。  相似文献   

2.
采用原位合成Al-K2TiF6-KBF4熔盐体系,通过熔体反应法成功制备了颗粒增强铝基复合材料。采用扫描电镜、X射线衍射(XRD)、万能力学试验机及摩擦磨损试验等研究了高能超声时间对复合材料的组织、力学性能和摩擦磨损性能的影响。结果表明:复合材料中存在TiB2颗粒和少量Al3Ti颗粒,颗粒大小为1~2μm,TB2颗粒的截面形貌接近于正六边形,且在基体中均匀分布。复合材料的抗拉强度和伸长率随着超声处理时间的增加而提高。当超声时间为4 min时,复合材料的抗拉强度和伸长率达到最大值,分别为172 MPa和11.1%,比A356母合金分别提高了20.3%和126%,断裂模式也从准解理断裂转为韧性断裂,耐磨性也相对最好,摩擦系数达到最小值0.44,磨损量为-0.5 mg。  相似文献   

3.
以细雾化铝粉和TiB2颗粒为原料,通过粉末冶金和热轧制制备微米TiB2和纳米Al2O3颗粒增强铝基复合材料。室温时,由于TiB2和Al2O3的综合强化作用,Al2O3/TiB2/Al复合材料的屈服强度和抗拉强度分别为258.7 MPa和279.3 MPa,测试温度升至350℃时,TiB2颗粒的增强效果显著减弱,原位纳米Al2O3颗粒与位错的交互作用使得复合材料的屈服强度和抗拉强度达到98.2MPa和122.5 MPa。经350℃退火1000 h后,由于纳米Al2O3对晶界的钉扎作用抑制晶粒长大,强度和硬度未发生显著的降低。  相似文献   

4.
通过调控金属颗粒的粒径可以显著改变W-PTFE-Al复合材料的热学特性和动态力学响应。燃烧性能测试结果表明W(7μm)-PTFE(40μm)-Al(1μm)复合材料在氩气气氛下的能量为4570.2J/g, 在氧气气氛下能量为9848.1J/g。这表明减小铝粉粒径和增大钨颗粒粒径有助于W-PTFE-Al材料能量值的提高。在冲击条件下, 四种W-PTFE-Al复合材料燃烧时间均超过500μs。随着铝粉粒径的减少,反应临界吸收功降低14%,“钝感”特性呈现下降趋势。随着钨粉粒径的减少,反应临界吸收功升高34.8%,“钝感”特性呈现上升趋势。动态压缩试验结果表明随着铝粉粒径从10μm降至1μm, W-PTFE-Al材料的抗压强度提高8.0%; 随着钨粉粒径从7μm降至100nm, W-PTFE-Al材料的抗压强度降低10.2%。  相似文献   

5.
采用真空热压法制备了SiCp的体积含量为30%的SiCp/2024Al复合材料,研究了SiCp粒径对复合材料组织及性能的影响。结果表明,颗粒粒径从3.5μm增大到40μm,复合材料的抗拉强度和硬度减小,伸长率和断面收缩率增大,增强体颗粒在基体中分布越来越均匀。当SiCp粒径为25μm时,复合材料的致密度最高。复合材料的断裂由SiCp的断裂、界面处撕裂和基体的开裂等几种机理共同影响。随着颗粒粒径的增大,复合材料断裂由界面处撕裂和基体开裂转变为SiCp断裂。  相似文献   

6.
采用粉末冶金工艺,分别制备了单一粒径TiB_2颗粒和混杂粒径TiB_2颗粒的TiB_2/Cu复合材料,研究了TiB_2颗粒混杂(2μm+50μm)增强对TiB_2/Cu复合材料微观组织和性能的影响。结果表明:在TiB_2颗粒总含量一定的条件下,与单一粒径TiB_2颗粒增强TiB_2/Cu复合材料相比,TiB_2颗粒混杂增强TiB_2/Cu复合材料的综合性能明显提高;当2μm与50μm TiB_2颗粒混杂配比为1∶2时,TiB_2/Cu复合材料综合性能最佳,硬度和导电率分别为69 HB和85.3%·IACS,相对于2μm单一粒径TiB_2颗粒增强TiB_2/Cu复合材料的硬度和导电率分别提高了12.2%和4.8%;TiB_2颗粒混杂粒径TiB_2/Cu复合材料的增强作用来源于获得了均匀致密的微观组织,不同粒径TiB_2颗粒在铜基体中更加弥散分布,使得混杂粒径的TiB_2颗粒协同增强铜基体作用更加明显,综合性能明显提高。  相似文献   

7.
通过调控金属粉末的粒径可以显著改变W-PTFE-Al复合材料的燃烧特性和动态响应。燃烧性能测试结果表明,随着铝粉粒径从10μm降至1μm,钨粉粒径从0.1μm升至7μm,W(7μm)-PTFE(40μm)-Al(1μm)复合材料在氩气气氛下的反应能量为4570.2 J/g,在氧气气氛下反应能量为9848.1 J/g。这表明减小铝粉粒径和增大钨粉粒径有助于W-PTFE-Al复合材料反应能量值的提高。在冲击条件下,4种W-PTFE-Al复合材料燃烧时间均超过500μs。随着铝粉粒径的减小,反应临界吸收功降低14%,"钝感"特性呈现下降趋势。随着钨粉粒径的减小,反应临界吸收功升高34.8%,"钝感"特性呈现上升趋势。动态压缩试验结果表明,随着铝粉粒径从10μm降至1μm,W-PTFE-Al复合材料的抗压强度提高8.0%;随着钨粉粒径从7μm降至100 nm,W-PTFE-Al复合材料的抗压强度降低10.2%。  相似文献   

8.
本文通过原位合成技术,成功制备了纳米ZrB2颗粒增强7085铝合金基复合材料。采用金相显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪进行表征,并进行力学性能测试,研究了ZrB2纳米增强体对7085铝合金的显微组织和力学性能的影响。结果表明,ZrB2纳米增强体可以显著提高7085铝合金的强度。但是随着增强体体积分数增大,ZrB2颗粒团聚现象加剧,不利于复合材料的塑韧性提高。同时,在复合材料中引入微量稀土元素Sc可使纳米ZrB2颗粒团聚现象得到改善,并进一步细化基体晶粒,使复合材料的强度和延长率都得到提高。当ZrB2含量为2%(体积分数)、Sc含量为0.4%(质量分数)时,复合材料的抗拉强度为534 MPa、伸长率为10.2%,相较于7085铝合金基体分别提高了17.4%、14.6%。  相似文献   

9.
采用高能球磨-粉末冶金法制备了Al2O3/Cu多孔复合材料(A-C-M)。首先利用高能球磨法将Cu粉和Al2O3粉末均匀细化,然后将Al2O3/Cu复合粉末与造孔剂尿素均匀混合后,再将混合粉末冷压成型,最后通过溶脱-烧结工艺制得A-C-M。采用X射线衍射(XRD)和扫描电镜(SEM)对粉末原料和A-C-M的微观形貌进行表征分析,使用万能试验机对A-C-M进行压缩性能测试,探讨了尿素和Al2O3含量对A-C-M性能的影响。结果表明:高能球磨使Al2O3/Cu复合粉末的形貌由球状变为片状,复合粉末尺寸先减小后增大,在球磨4 h时获得最小平均粒径为25μm; A-C-M含有两种特征孔,100~300μm的大孔和1~10μm的微孔;随尿素含量的增加,孔的连通程度及复合材料的孔隙率逐渐增加,其压缩强度逐渐降低;随Al2O3含量的增加,A...  相似文献   

10.
贾华  刘政军  李萌  张琨 《焊接学报》2019,40(9):122-127
采用明弧堆焊技术在Q235基体金属表面制备Fe-Cr-C-B-N-Ti系铁基复合材料. 借助金相显微镜、扫描电子显微镜、X射线衍射仪、洛氏硬度计和磨料磨损试验机对铁基复合材料的组织和性能进行分析与测试. 结果表明,铁基复合材料的基体组织由马氏体(M)和少量残余奥氏体(A)组成,硬质相由TiB2,TiN,TiC,M23(C,B)6,M3(C,B)和M2B组成. 随着钛添加量的增多,初生陶瓷硬质相颗粒(TiB2,TiN和TiC)和共晶硬质相(M23(C,B)6,M3(C,B)和M2B)增多,基体组织减少并细化. 当钛添加量为4%时,铁基复合材料的耐磨性达到最佳,此时硬度为66 HRC,磨损量为0.042 9 g.  相似文献   

11.
本文采用机械合金化工艺制备了两种不同形貌特征的高熵合金(Al0.25Cu0.75FeCoNi)颗粒,一种为椭球状颗粒(平均粒径为53μm,无过程控制剂);另一种为片状颗粒(平均粒径15μm,有过程控制剂)。采用挤压铸造工艺制备了低体积分数(颗粒含量为5 vol.%)的高熵合金颗粒增强铸造铝合金材料,重点分析了不同增强相形貌对复合材料的组织和力学性能的影响规律。结果表明:在复合材料预制块制备过程中,椭球状高熵合金粉体与铝粉容易混合均匀,而片状高熵合金粉体之间易发生团聚。椭球状颗粒与片状颗粒增强的复合材料的抗拉强度分别达到162MPa和174MPa,比铸铝合金实验基体分别提升了12.5%和 20.8%,但伸长率较铸铝合金基体却发生了明显下降。断口分析表明,椭球状颗粒增强复合材料的断裂以基体的撕裂为主;而片状颗粒增强复合材料则以团聚颗粒的破裂为主。  相似文献   

12.
基于TiB2增强AlSi10MnMg合金压铸件,研究TiB2颗粒对AlSi10MnMg合金铸件组织及力学性能的影响。结果表明,引入TiB2降低了预结晶晶粒(ESCs)的尺寸,改善了富铁相的尺寸及形貌,AlSi10MnMg合金的屈服强度、抗拉强度和伸长率同步提高。当TiB2添加量为0.018%时,合金的屈服强度、抗拉强度和伸长率达到160.5 MPa、296.3 MPa和6.7%,较AlSi10MnMg合金分别提高了5.3%、11.5%以及115.9%。试样的拉伸断口观察发现有许多细小的韧窝和较少的撕裂棱,主要断裂机制为韧脆混合断裂。进一步增大TiB2添加量,韧窝数量减少,断面处脆性断裂比例升高。  相似文献   

13.
SiCP尺寸对AZ61镁基复合材料组织和性能的影响   总被引:2,自引:0,他引:2  
采用高能超声法制备SiCP增强AZ61镁基复合材料.结果表明,高能超声能够使纳米级陶瓷颗粒在镁合金熔体中有效分散,所制备的复合材料抗拉强度和屈服强度等力学性能比基体有所提高.其中所用SiC颗粒粒径为100 mm、5μm和20μm,在1%的添加量下复合材料可以获得较好的性能,其抗拉强度分别为321、276和260 MPa,伸长率分别为13.8%、12.6%和10.6%.  相似文献   

14.
采用机械搅拌辅助混合盐法制备了TiB2质量分数为5%的Al-4.5Cu复合材料,借助光学显微镜、XRD、SEM、DES和TEM等手段对复合材料微观组织进行观察和分析,并通过拉伸试验测试了其力学性能。结果发现,TiB2颗粒通过产生位错塞积、位错环以及增加位错密度等方式阻碍位错的运动来强化基体合金。添加5%的TiB2的Al-4.5Cu合金屈服强度和抗拉强度比Al-4.5Cu合金分别提高了68.94%和32.65%,伸长率降低了45.56%,但其综合力学性能仍提高了11.33%。  相似文献   

15.
研究了Al2O3增强颗粒粒径对铝基复合材料性能的影响,将Al2O3和Al粉20vol%比例混合,利用放电等离子烧结(SPS)技术快速制备Al2O3/Al复合材料.研究了粒径为30 nm、0.5μm、1m、3.6μm的Al2O3增强颗粒对该复合材料相对密度、显微结构及耐磨性能的影响.结果表明,当Al2O3增强颗粒粒径增大时,复合材料内部颗粒间粘结强度越好,而相对密度和耐磨性能随之降低.  相似文献   

16.
以AZ91D镁合金和平均颗粒尺寸为10μm和10 nm的SiC颗粒分别作为基体和增强相,通过半固态机械搅拌法制备出单、双尺寸SiC颗粒增强镁基复合材料。结果显示,SiCp体积分数为2%的10 nm SiCp/AZ91D复合材料的抗拉强度达到198 MPa,提升了34.7%,屈服强度达到113 MPa,提升了46.7%,伸长率达到6.4%,这主要由于纳米SiC颗粒的晶粒细化作用。断裂机制表明,SiCp/AZ91D复合材料裂纹主要沿微米SiCp-AZ91D的界面扩展。  相似文献   

17.
在A356铝合金中同时引入原位纳米颗粒(TiB2+ZrB2)和元素Sb,通过纳米颗粒对基体的强化和Sb提高颗粒分散性所产生的协同作用来提高材料的力学性能。结果表明,单独引入(TiB2+ZrB2)颗粒会细化α-Al基体,减小二次枝晶臂间距,但复合材料内部存在严重团聚现象,不利于性能的提高。在此基础上引入Sb,降低纳米颗粒与Al基体间的界面能,纳米颗粒的团聚现象得到显著改善。原位纳米(TiB2+ZrB2)颗粒和Sb的协同引入使复合材料的强度和塑性较A356基体大幅提高,当(TiB2+ZrB2)和Sb的引入量分别为3%和0.6%(质量分数)时,铸态复合材料的抗拉强度、屈服强度和伸长率分别达到216.4 MPa、119.7 MPa和7.2%,相较A356基体的性能分别提高29.7%、23.5%、84.6%。  相似文献   

18.
采用原位铸造法将Al3Ti颗粒与铝基体复合可制备出高比强度的Al3Ti/Al复合材料。原位Al3Ti相易生成大尺寸长杆状颗粒且易团聚,降低熔体铸造性能并造成铸造缺陷。将超声处理工艺与原位铸造法结合,借助超声的空化和声流效应可有效分散并细化Al3Ti颗粒,从而制备出组织均匀及性能优异的Al3Ti/Al复合材料。本文以Al和K2TiF6为反应体系,通过超声辅助熔盐法制备出10%Al3Ti/Al(质量分数)中间合金,在此基础上采用超声辅助重熔稀释法可制备出组织均匀及力学性能良好的5%Al3Ti/A356(质量分数)复合材料,并对其微观组织和力学性能进行分析。结果表明,向A356基体中加入5%(质量分数)Al3Ti,能够显著细化晶粒,α-Al平均晶粒尺寸从250μm细化为135μm,降低了46%;T6热处理态复合材料的屈服强度、抗拉强度和伸长率分别为232MPa、287MPa、...  相似文献   

19.
采用原位法和半固态搅拌铸造法制备了体积分数为1%,尺寸分别为1μm、500 nm和100 nm的Al_2O_3颗粒和4wt%Mg_2Si颗粒增强铝基复合材料,利用金相显微镜、扫描电镜、X射线衍射仪和能谱仪对材料显微组织、相组成和元素组成进行分析,并对其拉伸性能进行测试。结果表明:Al_2O_3颗粒的加入使该复合材料基体组织得到细化,并且Al_2O_3颗粒尺寸越小组织越细。添加Al_2O_3颗粒使复合材料抗拉强度提高,随着Al_2O_3颗粒尺寸的减小,复合材料抗拉强度升高,而伸长率降低。Mg_2Sip/Al复合材料和(Al2O3(1μm)+Mg2Si)p/Al复合材料的断裂方式主要是韧脆混合型断裂,(Al_2O_3(500 nm)+Mg_2Si)p/Al复合材料和(Al_2O_3(100 nm)+Mg_2Si)p/Al复合材料断裂方式主要为韧性断裂。  相似文献   

20.
在不同凝固速率条件下制备了原位内生Mg_2Si和Si颗粒增强的Mg_2Si/Al复合材料,研究了凝固速率对其组织和力学性能的影响。结果表明,随着凝固速率增加,初生Mg_2Si和初生Si的颗粒数量增加,多边形初生Mg_2Si趋向转变为四边形形貌,初生Si形貌则无明显变化。随着凝固速率的加快,前者的平均尺寸由30μm变为6μm,后者的平均尺寸由71μm变为21μm。性能测试显示,Mg_2Si/Al复合材料的硬度,抗拉强度和伸长率也都随着凝固速率的提高而有所增长。最佳凝固速率为460℃/s,此时复合材料的硬度、抗拉强度和伸长率分别为169 HV0.2、221 MPa和1.63%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号