首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Desiccant coated heat exchanger provides a promising option for desiccant cooling system, since it can handle sensible load and latent load simultaneously within one component. It is fabricated by coating desiccant material on the surface of conventional fin-tube heat exchanger. In order to enhance the performance of conventional silica gel coated heat exchanger (SGCHE), a novel composite silica gel coated heat exchanger (CCHE) is proposed and fabricated. An experimental setup is built to test and compare the dynamic performance of SGCHE and CCHE. Influences of main operation parameters including water temperatures and inlet air conditions on system performance are analyzed in terms of average dehumidification capacity (Davg) and thermal coefficient of performance (COPth). Optimization of cycle switch modes is also discussed. Experimental results show that CCHE has better dehumidification performance compared with SGCHE. In addition, pre-cooling before dehumidification process is found to be advantageous to both Davg and COPth.  相似文献   

2.
The removal of moisture from the supply air using conventional air conditioners (A/C) represents a considerable portion of the air conditioning load in hot and humid regions. Desiccant assisted A/Cs are used to address this issue. In this work, the performance of a hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), is investigated experimentally. The effect of the process air stream's temperature and humidity, and the effect of the ventilation rate on the hybrid A/C performance are investigated. The experimental results show that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. The simulation of the complete hybrid solar A/C that uses a concentrating photovoltaic/thermal collector shows that a system coefficient of performance higher than unity is possible.  相似文献   

3.
This paper proposes a thermoelectric-assisted vapor compression cycle (TVCC) for applications in air-source heat pump systems which could enhance the heating capacity of the system. Performances of TVCC are calculated and then compared with that of basic vapor compression cycle (BVCC). The simulation results show that when coefficients of performance (COPs) of the two cycles are almost equal, the TVCC under maximum COP condition of the thermoelectric modules still performs better than BVCC by 13.0% in heating capacity through selecting the appropriate intermediate temperature. In addition, the TVCC can also achieve an improvement of 16.4%–21.7% in both the heating COP and capacity when compared with the BVCC with an assistant electric heater that is provided with the equivalent power input of thermoelectric heat exchanger. Thus, the TVCC could be beneficial to the applications in small heat pumps if there is always need for auxiliary electric heat.  相似文献   

4.
In recent studies, encapsulated phase change materials (PCM) were developed as novel materials for food packaging because of their improved thermal insulation capacity. The PCMs (often liquid in room temperature) are encapsulated in a shell material so as they can be practically handled. In this work, the thermal behaviour of an encapsulated PCM material (Rubitherm RT5 encapsulated in polycaprolactone PCL) with two different PCM mass fractions was studied. The model was validated by experimental cooling and heating processes, under controlled air temperature conditions. The numerical result demonstrated a better thermal buffering capacity of the encapsulated PCM material compared to a standard one (cardboard).  相似文献   

5.
A multi-split VRF system operates unsteadily most of time due to the constantly varying refrigerant flow rates of associated indoor units. VRF systems require a different approach from conventional techniques to detect faults, which have developed based on steady-state operations. In this paper, two fault detection techniques are proposed. Their advantage is that they do not require the test data to be preprocessed to obtain steady-state data. The first technique is applied to detect heat exchanger fouling by a state observer, and the other technique is used to detect valve sticking by temperature variance. These techniques were not chosen haphazardly but were derived from physical reasoning. Their validity was confirmed by test data. The methodology developed in this study can be applied similarly to other HVAC equipment that operates mostly in transient states.  相似文献   

6.
Thermal characteristics of a plate evaporator using ammonia are experimentally investigated. The effects of mass flux, heat flux, channel height, and saturation pressure on heat transfer coefficient of the evaporator are discussed. The experiments are conducted for mass flux (5 and 7.5 kg m−2 s−1), heat flux (10, 15, and 20 kW m−2), channel height (1, 2, and 5 mm), and saturation pressure (0.7 and 0.9 MPa). Heat transfer coefficient is obtained as a function of quality for all experimental conditions. The characteristics of heat transfer coefficient are discussed and compared with those of earlier works. All experimental results are compiled by using Lockhart–Martinelli parameter. The developed empirical correlation predicts 85% of the experimental data within ±30% range.  相似文献   

7.
The heat transfer and flow characteristics of MWCNT-R141b nanorefrigerant with different mass fractions have been studied through experiments. Experimental results were compared with existing correlations. A two-step method was used to prepare the nanorefrigerants. Span-80 was used as surfactant with an average particle diameter of 20 nm. Transmittance method was used to evaluate the stability of nanorefrigerants. Results showed that the stability of MWCNT-R141b nanorefrigerant, which is the added dispersant, was good during the experiments. The 0.3 wt% MWCNT-R141b nanorefrigerants had optimal heat transfer enhancement effects compared with pure refrigerants. The maximum Nusselt number increased by 40%. The specific pressure drop of nanorefrigerant increased as the Reynolds number (Re) increased, and the specific pressure drop of the pure refrigerant was minimum, which is similar to R141b.  相似文献   

8.
Effect of microgroove geometry on the frost formation and frost melt-water drainage is experimentally investigated on a number of aluminum surfaces. Condensation and frost formation processes are also examined on a set of microgrooved copper surfaces for which the dimensions of the microgroove geometry are varied in a cyclic manner. These metal surfaces are studied because of their technical importance as working materials and are fabricated by two different techniques, photolithography and wet etching, respectively. The morphology, distribution and growth pattern of the condensed and frozen water droplets are found to be considerably different on the microgrooved surfaces from that on the flat baseline surfaces. While the amount of frost melt-water retention on the flat surfaces is found to increase in the subsequent refrost cycles and is highest in the last frost cycle, the microgrooved aluminum surfaces consistently exhibit improved frost-water drainage in all frost cycles and under different operating conditions. Findings of this study will be useful in designing microgrooved metal surfaces operating under frosting/defrosting conditions to have improved frost-water drainage properties.  相似文献   

9.
Effects of fin spacing on the temperature distribution in a finned tube adsorber bed are studied to decrease the temperature gradient inside the adsorber bed and minimize the adsorber bed to adsorbent mass ratio (AAMR) for vehicle air conditioning applications. Finned tube adsorber beds have shown higher specific cooling power and coefficient of performance, and low AAMR among the existing adsorber beds. A single-adsorber bed ACS with interchangeable heat exchangers is built and equipped with hermetic type T thermocouples. Two copper heat exchangers with 6.35 mm (1/4″) and 9.5 mm (3/8″) fin spacing are custom-built and packed with 2–4 mm silica gel beads. The experimental results show that by decreasing the fin spacing from 9.5 mm to 6.35 mm, the temperature difference between the fin and adsorbent reduces by 4.6 °C under the cycle time of 600 s and an adsorption to desorption time ratio (ADTR) of one. A greater reduction in the temperature gradient inside the adsorber bed with smaller fin spacing is observed for short cycle time operation, e.g. 600 s, compared to long cycle time operation, e.g. 1400 s. Finally, simultaneous comparison of the temperature gradient between the fins and AAMR against fin spacing indicates that the optimum fin spacing for a finned tube heat exchanger packed with 2–4 mm silica gel beads is about 6 mm.  相似文献   

10.
For providing good performance of dehumidifier and regenerator with certain dimensions, a new type of internally cooled/heated dehumidifier/regenerator based on the plate–fin heat exchanger (PFHE) was designed. To investigate the behavior of the new equipment, an experimental setup was established in an environment chamber with regulable temperature and humidity air. By the internally cooled dehumidification testing, effects of the cooling water temperature, the air flow rate and the desiccant temperature on the dehumidification performance and the cooling efficiency were presented. The behavior of internally cooled dehumidification process was compared with that of the adiabatic dehumidification process. The results suggested that the cooling efficiency decreased with the increasing of the cooling water temperature and desiccant with low temperature could bring more mass transfer coefficients. There is an optimal air flow rate to achieve the maximum absolute humidity decrease of the air. By the internally heated regeneration testing, effects of the air flow rate and the desiccant inlet temperature on the regeneration performance and air outlet parameters were discussed and also compared with those of the adiabatic regeneration process. It was concluded that the regeneration efficiency of internally heated regeneration was more than that of the adiabatic regeneration, and the internally heated regenerator could offer better thermal performance.  相似文献   

11.
To improve the defrosting accuracy and the energy efficiency of the air-source heat pump (ASHP) under frosting and defrosting conditions, a novel Temperature–Humidity–Time (T–H–T) defrosting control method, based on a frosting map for the ASHP unit, is proposed in this paper. A field test was conducted for two heating seasons, to verify the feasibility and applicability of the T–H–T method. The advantages of the T–H–T method, compared to the conventional Temperature–Time (T–T) defrosting control method, are presented. In total, eight cases are shown in this paper. Cases 1 to 4 were chosen to reveal the T–H–T performance under different frosting conditions. It was found that no matter what kind of frosting conditions, defrosting was always initiated in a similar situation: ∼90% of the outdoor coil surface was covered by frost; the temperature difference between the compressor suction and discharge increased by ∼20%; and the heating capacity decreased by ∼30%. These results indicate that the T–H–T method can make an accurate decision under different frosting conditions. Cases 5a, 5b and Cases 6a, 6b were two groups of cases to compare the advantages of the T–H–T method against the conventional T–T method. Cases 5a and 5b were chosen for the non-frosting condition. It was found that the T–T method initiated the defrosting operation 31 times within 24 h. However, none of the defrosting operations was conducted for the T–H–T method. Cases 6a and 6b were chosen to compare these two methods under consecutive and variable frosting conditions. For the T–T method, 63% of the defrosting processes were found to be executed under conditions where defrosting was not necessary. However, for the T–H–T method, all the defrosting controls were found to be accurate and reasonable. These results indicated that the novel T–H–T method is suitable for the defrosting control of the ASHP, and has a more competitive performance than the conventional T–T method.  相似文献   

12.
When an air source heat pump (ASHP) unit operates for space heating at a frosting environment, periodic defrosting is necessary to maintain a high system performance. To defrost efficiently, it is necessary to find an effective defrosting control method. In this paper, an experiment was carried out on an ASHP unit with a capillary tube as a throttle device, under simulated frosting and defrosting conditions using time control defrosting method, and the experimental results are firstly presented. Secondly, a novel defrosting control method based on the degree of refrigerant superheat (DS) is reported. To validate the novel defrosting control method, a further experiment was conducted on another ASHP unit with an electronic expansion valve (EEV) as a throttle device, under simulated frosting and defrosting conditions. The experimental results demonstrated that when applying the novel defrosting control method, defrosting was initiated before the operating performances of ASHP unit rapidly deteriorated, which was more reasonable.  相似文献   

13.
In the present paper, the refrigerant mixture R32/R290 (68%/32% by weight) is investigated as the drop-in replacement for R410A in household air conditioners. The GWP of it is only 22% of that of R410A. Theoretical and experimental investigations are conducted on the performance of the air conditioners working with both R32/R290 and R410A. Experimental results show that the refrigerant charge amount of R32/R290 is reduced by 30.0%–35.0%; the cooling and heating capacities are increased by 14.0%–23.7%. For further reducing charge amount and flammability, the micro-channel heat exchanger (condenser) is employed to replace the finned tube one. Compared with the R32/R290 system using finned tube heat exchanger, the R32/R290 charge amount and the power consumption are reduced by 34.1% and 0.4%, respectively; the cooling capacity and the COP are increased by 6.4% and 6.8%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号