首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
李颂华  李祥宇  孙健 《表面技术》2021,50(10):363-372
目的 确定加工氮化硅陶瓷轴承套圈端面的最优磨削加工参数,并构建表面粗糙度的预测模型.方法 首先,使用双端面磨床对氮化硅陶瓷轴承套圈进行多组单因素实验,实验设置的2个变量分别为砂轮转速和砂轮进给速度,并对两变量分别设置4个加工参数水平,以分析砂轮进给速度和砂轮转速对加工后表面质量的影响;再利用MATLAB中的工具箱,构建表面粗糙度预测模型.结果 通过实验得到最优的加工参数(砂轮转速为1400 r/min,砂轮进给速度为200μm/min),最优的表面粗糙度达到0.0827μm,符合工程中对高精度全陶瓷轴承端面的质量要求.建立了预测模型,并对该预测模型进行了优化,优化后的预测模型较实际测量的表面粗糙度Ra绝对值最小的相对误差为–0.56%,预测值与实际测量的表面粗糙度值的最大误差为0.0113μm.结论 表面粗糙度与砂轮转速和砂轮进给速度呈负相关,从实验结果与预测模型中可以看出,随着砂轮转速和砂轮进给速度的提高,表面粗糙度呈下降趋势.磨削氮化硅陶瓷轴承套圈的端面时,适当提高砂轮转速和砂轮进给速度有助于降低表面粗糙度,提高表面质量.  相似文献   

2.
目的针对HIPSN(热等静压氮化硅)陶瓷精密加工效率低、成本高、难度大的问题,对HIPSN陶瓷高效精密磨削加工工艺进行优化。方法利用高精度成形磨床对HIPSN陶瓷进行试验,分析砂轮线速度、磨削深度、工件进给速度等工艺参数对磨削后表面质量的影响规律。结果磨削深度由0.005 mm增加到0.050 mm,表面粗糙度值由0.2773μm减小到0.2198μm,并趋于稳定;工件进给速度由1000 mm/min增加到15 000 mm/min,表面粗糙度值由0.2454μm减小到0.2256μm,之后增大到0.2560μm,并趋于稳定;砂轮线速度由20 m/s增加到50 m/s,表面粗糙度值由0.2593μm减小到0.2296μm。随着工件进给速度的增大,表面波纹度平均间距Sw由0 mm直线增加到5.90 mm;随着砂轮线速度的提高,平均间距Sw由2.33 mm直线减小到0.68 mm。优化工艺参数组合:砂轮线速度50 m/s,磨削深度0.030 mm,工件进给速度3000 mm/min。结论表面粗糙度值与磨削深度和砂轮线速度呈负相关,随着工件进给速度的增大,表面粗糙度值先减小后增大,之后趋于稳定。减小工件进给速度、提高砂轮线速度有助于改善表面波纹度。  相似文献   

3.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

4.
针对GT35动压马达轴精密加工精度难以保证、效率低、成本高的难题,开展马达轴精密磨削加工工艺研究。通过开展不同结合剂,不同粒度、浓度的金刚石砂轮磨削对比试验,研究不同砂轮参数对工件形状精度、表面质量、比磨削能等的影响规律,设计超硬磨料砂轮;通过正交试验,确定影响轴精密磨削表面粗糙度、圆度、圆柱度的最优工艺参数;采用最优磨削参数对20件马达轴开展了磨削加工验证试验。研究得到:当工件转速304 r/min、进给速度0.003m/min、进给量1μm时,获得最优的马达轴圆度0.11μm、圆柱度0.34μm、粗糙度Ra0.041μm的合格工件。  相似文献   

5.
迟玉伦  顾佳健 《表面技术》2021,50(3):366-375
目的 通过对轴承套圈表面修整工艺优化的研究,实现对轴承套圈表面优质高效的磨削加工.方法 首先基于金刚滚轮修整原理和力学原理,建立修整过程系统简化模型,根据模型求得系统固有频率,再根据频响函数曲线图确定主轴最佳转速.然后建立砂轮与滚轮的运动轨迹方程,根据方程求得曲率半径,再根据曲率半径求得使砂轮表面粗糙度较低的修整速比.接着引入一个新的物理量干涉角,根据经验确定一个较优的干涉角,将修整速比代入,求得最后的滚轮进给速度.最后通过间接获得的磨削力大小来优化整个修整过程,若磨削力偏大,则重新选择主轴转速.结果 根据该方法得到优化结果,选用砂轮转速为23994 r/min、滚轮转速为5473 r/min、修整进给速度为1.77 mm/min、磨削力为37.2 N时,轴承套圈表面能获得较高的质量.对比优化前后轴承套圈沟形,由优化前的不合格变为优化后的合格,有了显著的改善.结论 将修整参数运用多个方法进行确定,并通过磨削力进行最后的优化.根据加工产品表面呈现出的问题,可以找到对应的参数,进而对参数进行单独优化,为企业优化轴承套圈表面质量提供了一套科学有效的方法.  相似文献   

6.
目的 以GCr15材料的6309型轴承内圆为研究对象,探究高转速超声磨削过程中超声辅助振动对磨粒运动轨迹、磨削后表面粗糙度、圆度以及微观形貌的影响规律。方法 基于超声内圆磨削磨粒切削轨迹及超声振幅与砂轮转速对轨迹影响的理论仿真,构建磨削去除量与磨削表面粗糙度的理论模型,通过对轴承内圆进行超声磨削试验,研究高转速(16 000~22 000 r/min)下各工艺参数对内圆表面质量的影响并验证理论粗糙度评价模型。结果 超声振幅的增大使磨粒与内圆接触轨迹变长,但随砂轮转速的提高,磨粒切削轨迹的密集程度也有所下降。振幅和砂轮转速的增大可使切削去除量增大、粗糙度降低,铬刚玉粒度100#陶瓷结合剂砂轮磨削GCr15轴承内圆后,其表面质量更有优势,单因素下表面质量变化趋势与理论分析结果相一致。结论 在相同磨削参数下,1.5μm振幅超声磨削可使内圆圆度降至0.92μm,粗糙度降至130.5 nm,与传统磨削相比,粗糙度最高减小了41.5%,圆度最高减小了52.6%。在高转速下,各因素按砂轮对磨削后表面质量的影响由大到小的顺序依次为砂轮转速、超声振幅、进给速度,当磨粒线速度超过41.8 m/s、进给速度...  相似文献   

7.
针对航天用SiC反射镜的低加工效率、表面质量差等难题,采用超声振动辅助磨削技术对其进行工艺实验研究。首先,通过选用树脂结合剂金刚石杯型砂轮并采取栅线式磨削研究不同工艺参数对磨削效率的影响关系。然后采取螺旋式磨削进行正交实验探究超声振幅、进给速度、砂轮转速、磨削深度对表面粗糙度的影响,并采用极差法分析探究各因素对工件磨削质量影响程度的大小。研究结果表明:当超声振幅5μm,进给速度80mm/min,砂轮转速6000r/min,磨削深度2μm时可获得表面粗糙度Ra97nm的已加工表面。  相似文献   

8.
本文使用SiC砂轮和金刚石砂轮对颗粒尺寸大、体积分数高的SiCp/Al复合材料进行了平面磨削实验,研究了磨削深度和工件进给速度对磨削力的影响,并利用扫描电镜对已加工表面形貌进行了研究.结果表明:使用SiC砂轮加工时,磨削力随磨削深度的增加而增大;工件进给速度较低时,磨削力随工件进给速度增加而减小,当工件进给速度超过12...  相似文献   

9.
研究工程陶瓷磨削参数对磨削力的影响,参数有金刚石砂轮线速度、磨削深度及工件进给速度,提高陶瓷加工效率和加工精度。以金刚石砂轮平面磨削ZrO_2陶瓷为例,通过正交实验法设计多组关于金刚石砂轮线速度、磨削深度和工件进给速度的磨削组合参数,利用平面测力仪测量不同磨削参数下的磨削力。同时,运用ABAQUS建立单颗金刚石磨粒磨削ZrO_2陶瓷的有限元模型,分析磨粒磨削陶瓷过程,将实验结果与仿真结果进行对比分析。金刚石砂轮线速度由30m/s增大到50m/s时,磨削力逐渐减小;平面磨削深度由5μm增大到15μm,磨削力逐渐增大;工件随着进给速度的增加,磨削力逐渐增大;实验结果与仿真结果基本一致。影响法向磨削力最大的因素是磨削深度,当平面磨削深度增大,法向磨削力也随之增大;砂轮线速度对切向磨削力的影响最大,随着线速度的增大,切向磨削力增大。研究结果对于提高工程陶瓷加工效率,改进加工质量具有重要的促进作用。  相似文献   

10.
大尺寸硅片自旋转磨削的试验研究   总被引:1,自引:0,他引:1  
利用基于自旋转磨削原理的硅片超精密磨床,通过试验研究了砂轮粒度、砂轮转速、工件转速及砂轮进给速度等主要因素对材料去除率、砂轮主轴电机电流以及磨削后硅片表面粗糙度的影响关系。研究结果表明,增大砂轮轴向进给速度和减小工件转速,采用粗粒度砂轮有利于提高磨削硅片的材料去除率,砂轮轴向进给速度对材料去除率的影响最为显著;适当增大砂轮转速,减小砂轮轴向进给速度,采用细粒度砂轮可以减小磨削表面粗糙度;在其它条件一定的情况下,砂轮速度超过一定值会导致材料去除率减小,主轴电机电流急剧增大,表面粗糙度变差;采用比#2000粒度更细的砂轮磨削时,材料去除率减小,硅片表面粗糙度没有明显改善。  相似文献   

11.
李颂华  马超  孙健 《表面技术》2021,50(11):354-361, 371
目的 确定在旋转超声磨削加工下使氧化锆陶瓷出孔端面崩边面积最小时的最优磨削参数,并证明在工件底部加辅助支撑抑制崩边策略的合理性,为实际生产提供理论指导.方法 以出孔端面崩边面积与加工后理想孔面积之比Hd值作为出孔质量评价指标.首先对氧化锆陶瓷进行孔磨削正交实验,实验设置为三因素四水平,因素分别为主轴转速、进给速度及超声波振幅,得到各因素对Hd值的影响趋势及初步预测最优磨削参数组合;其次利用单因素实验,进一步分析各因素对Hd值的影响及确定最优的磨削参数范围;最后通过在工件底部加辅助支撑来进一步降低Hd值.结果 通过实验得到最优的加工参数范围,主轴转速为15000~17000 r/min,进给速度为0.5~0.6 mm/min,超声波振幅为6~8μm时,可将Hd值控制在3.308×10-3以内.采用辅助支撑后,Hd值最多可再降低11.83%.结论 旋转超声磨削加工下,氧化锆陶瓷出孔Hd值随主轴转速、进给速度和超声波振幅的增加呈先减小、后增大的趋势,在保证进给速度最优时,适当提高主轴转速及超声波振幅有助于提高出孔表面质量,并可提高加工效率.采用在工件下方加辅助支撑的策略,能有效降低出孔端面崩边面积,并从理论和实验上证明其可行性.  相似文献   

12.
为提高氮化硅陶瓷的加工精度,用激光辅助复合加工技术在氮化硅表面烧蚀出4种具有相同表面积的结构化图案,然后用金刚石砂轮对氮化硅表面进行磨削,研究图案结构对磨削效果的影响,并分析砂轮转速、进给速率等参数对磨削力的影响。结果表明:激光烧蚀能够在氮化硅表面产生凹槽并降低表面氮化硅的强度,从而有利于磨削液进入并降低磨削力,最高降幅达63%。同时,金刚石砂轮磨损也有效降低。磨削结构化的氮化硅表面时,砂轮转速和进给速率对磨削力的影响规律同磨削普通氮化硅时的规律一致。   相似文献   

13.
赵旭  巩亚东  张伟健  韩冰 《表面技术》2021,50(5):329-339
目的 针对高体积分数SiCp/Al加工表面缺陷复杂多样,提出其表面质量综合评价方法,研究磨削参数对SiCp/Al磨削表面质量的耦合影响规律,优化加工工艺.方法 基于SiCp/Al磨削加工表面缺陷,提出粗糙度综合指标SR为主、表面形貌为辅的表面质量综合评价方法,采用全因子试验方法分析低、高进给速度工况下主轴转速和磨削深度对表面质量的影响规律.借助Abaqus软件揭示SiCp/Al磨削表面形成机理,解释试验结果.结果 小切深(ap为5μm和20μm)时,粗糙度综合指标SR随着主轴转速ns的增加而先递减再增大;大切深(ap为40μm和80μm)时,SR随着ns的递增而递减或近似递减.低主轴转速(ns为2000 r/min和4000 r/min)时,SR随着磨削深度ap的增加(ap由5μm递增到80μm)而先增大再减小而后又增加;高主轴转速(ns为6000 r/min和8000 r/min)时,SR随着ap的增加而先增加再低进给量时减小或高进给量时增加.获得最佳磨削表面质量的最优磨削参数是:进给速度vf=50 mm/min,磨削深度ap=5μm,主轴转速ns=6000 r/min.兼顾磨削效率和表面质量的最优磨削参数是:vf=50 mm/min,ap=80μm,ns=8000 r/min.结论 表面质量综合评价方法的可靠性较高,主轴转速和磨削深度对表面质量的影响具有耦合性,减小磨削深度、采用适当主轴转速有助于改善表面质量.  相似文献   

14.
张珂  赵国欢  孙健  韩涛  刘春光 《表面技术》2017,46(12):251-258
目的研究工程陶瓷磨削参数对磨削温度的影响,磨削参数包括金刚石砂轮线速度、磨削深度及工件进给速度。方法以金刚石砂轮平面磨削ZrO_2陶瓷为例,运用ABAQUS建立单颗金刚石磨粒磨削ZrO_2陶瓷的有限元模型,分析磨粒磨削陶瓷过程。同时通过正交实验法设计多组关于金刚石砂轮线速度、磨削深度及工件进给速度的磨削组合参数实验,利用人工热电偶法对磨削温度进行测量,将实验结果与仿真结果进行对比分析。结果砂轮线速度由30 m/s增加到50 m/s,磨削深度由5μm增加到15μm,工件进给速度由1000 mm/min增加到3000 mm/min,磨削温度和磨削热分配比均增加,仿真结果与实验结果基本一致。结论磨削过程中磨削深度和工件进给速度对磨削温度的影响较大,随着金刚石砂轮线速度、磨削深度及工件进给速度的增加,磨削温度和磨削热分配比均增大。  相似文献   

15.
修整参数对陶瓷cBN砂轮磨削效果的影响   总被引:2,自引:1,他引:1  
本研究采用陶瓷cBN砂轮加工冷激合金铸铁凸轮,采用金刚石滚轮对砂轮进行在线修整。通过改变修整量、滚轮与砂轮的相对移动速度、修整速比,得出修整参数对砂轮磨削效果的影响规律。研究结果表明,当修整量从5μm×4降低到5μm×3时,工件表面粗糙度从0.25μm增大0.27μm,但仍可满足加工表面粗糙度要求,而砂轮修整量减少1/4,砂轮使用寿命延长;滚轮与砂轮的相对移动速度从0.1 mm/r增大到0.15 mm/r时,工件表面粗糙度值Ra从0.354μm上升到0.452μm,砂轮耐用度从750个工件降低到480个;修整速比增大,工件磨削表面粗糙度增大,当修整速比从0.61增大到1.35时,工件表面粗糙度值Ra从0.2μm增大到0.63μm。  相似文献   

16.
目的 关联主轴系统动静态特征,研究端面磨削表面创成机理.方法 以粉末冶金不锈钢316L为研究对象,首先构建关联主轴系统动静态特征的有限元模型,分析主轴系统动静态特征对砂轮端面各位置位移大小的影响.然后基于端面砂轮表面磨粒的位置和尺寸信息,建立端面砂轮磨粒三维空间轨迹方程,推导相邻磨粒运动关系式,采用轮廓搜索法确定端面磨削表面的动静态创成过程.最后,结合端面磨削加工实验,分析端面磨削系统动态、静态特征对加工表面粗糙度与轮廓度的影响规律,阐释加工表面材料去除不均匀的本质,并提出创成表面质量的参数化修正方法.结果 靠近砂轮边缘的磨粒静态退让量大于靠近砂轮中心部分的磨粒静态退让量,但不同位置的磨粒动态振动量差异不大.静态退让量随切深的增加而增大,动态振动量随砂轮转速的增加而增大.结论 砂轮表面磨粒的静态退让性是造成加工表面轮廓度误差的重要因素,同时主轴系统动态振动特征会影响加工表面粗糙度.分析可得,砂轮转速在400 r/min左右,与之匹配无理数转速比的工件转速和较小的法向切深,可提高端面磨削表面质量表征.  相似文献   

17.
本文用树脂结合剂金刚石砂轮对钒酸钇晶体进行了平面磨削实验,研究了砂轮线速度、工件进给速度和磨削深度对磨削力和磨削表面粗糙度的影响。结果表明:磨削力和磨削表面粗糙度都是随着砂轮线速度的增加而减小,随进给速度和磨削深度的增加而增加,其中磨削深度对磨削力影响最大,砂轮线速度对磨削表面粗糙度影响最大。钒酸钇晶体的磨削表面主要由断裂区域和光滑区域组成,当砂轮线速度为30m/s时,磨削表面存在宽度约100μm的裂痕,而随着砂轮线速度的上升,裂痕宽度降低到50μm以下,同时光滑区域所占的比例增加,这可能与发生塑性变形的机率增大有关。  相似文献   

18.
在平面磨床上采用"纵向往复进给+横向间歇进给怕勺方式对40Cr钢进行大尺寸平面磨削淬硬正交试验,研究了横向截面上软化带宽度与各因素之间的变化规律。结果表明:随磨削深度的增大或工件进给速度的减小,软化带宽度增大,而随着重磨区宽度的增大,软化带宽度则先减小后增大;各因素对软化带宽度的影响顺序为工件进给速度v_w重磨量C_r磨削深度a_p;最优磨削淬硬参数组合为V_w=0.8 m/min,C_r=1mm,a_p=0.1mm。  相似文献   

19.
针对48%体积比SiCp/Al复合材料卫星专用输出轴的超精密加工难题,采用ELID精密磨削技术对其进行了工艺实验研究。首先,通过建立切入磨粒磨削模型,得到了48%体积比SiCp/Al复合材料的磨削机理及影响因素。然后探究了不同电火花参数对砂轮修整形貌的影响,并采用极差分析探究了各因素对工件磨削质量影响程度的大小。研究表明,当砂轮转速为1500r/min,进给量0.25μm,进给速度0.9m/min,电解电流10A,占空比60%时,磨削质量最好,得到了表面粗糙度Ra0.096μm,圆柱度0.85μm的48%体积比SiCp/Al复合材料输出轴精密磨削表面。  相似文献   

20.
基于大口径非球面镜交叉磨削加工方式,分析主轴偏心振动幅值和磨削工艺参数对其表面波纹度的影响,建立磨削表面波纹度形成机理三维模型。通过仿真试验分析磨削表面三维波纹度与加工工艺参数的关系,提出特定主轴最佳磨削工艺参数匹配方案。磨削试验结果表明:建立的三维表面波纹度模型与磨削工艺参数关系合理,最优的磨削工艺参数匹配方案为砂轮转速1 600~1 800 r/min,X轴进给速度1~3 mm/r,工件旋转速度20 r/min。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号