首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
秦子轩  张恒  甘益  李晗  翟倩  杨自强  甄琪 《塑料工业》2024,(2):16-23+38
为开发新型聚乳酸(PLA)基可降解贴肤用超细纤维材料,采用聚乙二醇(PEG)和乙撑双硬脂酸酰胺(EBS)对PLA/聚己内酯(PCL)体系进行共混改性。通过熔喷工艺制备出PLA/PCL@EBS超细纤维材料,并对共混聚合物的热力学特性、样品形貌和柔软性等进行实验分析。结果表明,加入PCL和EBS能够削弱PLA大分子间作用力,提高分子链运动能力,提升材料柔韧性能。此外,当模头温度为216℃时,材料纵向最大拉伸强度为64.42 N,较204℃时增加216%,断裂伸长率提高67%,力学性能大大提高。接收距离(DCD)增大,则提升了材料透气性能,当DCD最大为32 cm时,材料孔隙率与透气率分别为92.4%和327.4 mm/s。最后,模头温度和DCD对柔软度得分的影响规律进行响应面分析,为提高PLA/PCL@EBS熔喷非织造材料在贴肤领域应用提供思路。  相似文献   

2.
利用双螺杆挤出机将聚乳酸(PLA)切片和纳米载银磷酸锆颗粒共混制备纳米载银磷酸锆质量分数为20%的PLA母粒。将母粒和纯PLA切片按照不同比例共混熔纺制备PLA/纳米载银磷酸锆共混纤维。研究了共混纤维的制备方法,运用扫描电子显微镜观察了纤维束外部形貌,测试了纤维的力学及抗菌性能。结果表明,纳米载银磷酸锆在纤维中有少量凝聚,总体分散均匀;随着纳米载银磷酸含量提升,纤维断裂强度先增大后降低,同时纤维的抗菌性不断增加。当载银磷酸锆含量达到1.5%时,纤维的断裂强度最大为0.85 c N/dtex,对大肠杆菌和金黄色葡萄球菌抑菌率达99.9%。  相似文献   

3.
牵伸是将纤维杂乱的分子达到有规则的定向排列,增强纤维的强力;加拈是使纤维给予适当的粘度,增加单根纤维间的抱合力,从而使纤维符合纺织加工要求。纺织用的纤维一般在轻(代糸)牵伸加拈机上进行牵伸加拈,工业用的纤维在重(代糸)牵伸加拈机上进行牵伸加拈。  相似文献   

4.
采用熔融纺丝法制备了聚乳酸(PLA)/聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(P34HB)共混纤维,分析了P34HB含量对PLA/P34HB共混纤维热学性能、结晶性能和力学性能的影响,并研究了拉伸倍数对P34HB含量为30%(w)的共混纤维性能的影响。结果表明:当拉伸倍数为3倍时,随着P34HB含量的增加,PLA/P34HB共混纤维的结晶度逐渐降低,断裂强度和初始模量逐渐下降,而断裂伸长率逐渐增大;随着拉伸倍数的增大,P34HB含量为30%(w)的PLA/P34HB共混纤维的结晶度、断裂强度和初始模量逐渐提高,断裂伸长率逐渐降低,当拉伸8倍时,共混纤维的断裂强度达到425 MPa,断裂伸长率为15.5%,初始模量为7 005 MPa。  相似文献   

5.
李建华  汪晓东 《塑料工业》2020,48(1):104-107
利用熔融共混法制备了聚乳酸(PLA)含量为10%的聚甲醛/聚乳酸(POM/10PLA)共混物,并采用熔融纺丝工艺制备了POM/10PLA纤维。利用热分析仪研究了POM/10PLA共混物及其纤维的热解行为,并采用Flynn&Wall方法和Toop方法分析了POM/10PLA纤维的热解动力学,预测了其寿命。结果表明,纤维化有利于提高POM/10PLA共混物的热稳定性和预期寿命。  相似文献   

6.
以聚乳酸(PLA)、聚己内酯(PCL)为原料,乙酰柠檬酸三丁酯为相容剂,采用熔融共混法制备了PCL含量不同的PLA/PCL复合材料,结合新型活塞挤出式三维打印技术打印多孔生物支架,并进行材料的孔隙率计算、接触角测量、表面形貌观察、力学性能测试。结果表明:随着PCL用量的增加,复合材料疏水倾向增大;支架成型难度增加,孔隙率变小,纤维表面变得光滑,压缩强度下降,冲击韧性更好。  相似文献   

7.
李子辉  蒋晶  金章勇  蔡泊志  曹永俊  李倩 《化工学报》2020,71(12):5842-5853
以聚己内酯(PCL)为基体,添加不同含量聚乳酸(PLA)熔融共混制备具有不同分散相形态的PCL/PLA共混物,利用超临界二氧化碳(scCO2)微孔发泡工艺制备不同发泡倍率和开孔率的PCL/PLA多孔材料用于吸油应用。针对边长3 mm正方体样品溶解度实验发现100 min后CO2在PCL中已达到饱和吸附状态。PLA分散相含量的增加显著增大了PCL/PLA共混物泡孔密度,并使共混泡孔尺寸减小且分布更加均匀;发泡温度升高6℃,泡孔尺寸增大50%,发泡倍率增大38%,开孔率减小了20%。PCL/PLA开孔材料具有明显的亲油疏水性,发泡倍率越高,疏水性越好;针对花生油和硅油的吸油实验发现材料吸油率与发泡倍率和开孔率整体呈正比,实际吸油量高于理论计算值,10次循环吸油测试后样品吸油率仅降低8.5%,材料吸油量与油品特性黏度关系不大。  相似文献   

8.
以聚乙酸乙烯酯(PVAc)为增容剂,采用熔融共混和熔融纺丝的方法制备了聚乳酸(PLA)/聚酰胺弹性体(PAE)/PVAc共混切片和共混纤维,研究了增容剂的加入对共混切片相容性的影响和共混纤维増韧改性效果的影响。结果表明,加入PVAc后,分散相粒子尺寸减小,两相界面模糊,相容性提高。随着PAE弹性体含量增加,初生纤维中PLA的结晶度提高;二级牵伸共混纤维在PAE含量为10%时,综合力学性能最优,断裂强度、模量、断裂伸长率和断裂功分别达412.7 MPa、6 345.4 MPa、22.3%和127.4 mJ,共混纤维的可纺性显著提高。  相似文献   

9.
目前石油基多孔吸声材料在市面上被广泛应用,在环保方面仍存在一系列问题亟待解决,因此需要开发绿色可降解的多孔吸声材料。首先以聚乳酸(PLA)纤维为原料,通过针刺非织造工艺制备了PLA针刺非织造材料,考察了针刺道数、纤维喂入量、针刺深度对非织造材料结构和吸声性能的影响。结果表明,较大的纤维喂入量和适当针刺深度能够显著提升非织造材料的吸声性能,在针刺道数8道和针刺深度5 mm下制备的面密度为300 g/m2的针刺非织造材料(PLA300-8-5)吸声系数可达0.56。采用静电纺丝技术制备不同形貌的PLA超细纤维,并将其与PLA300-8-5非织造基材复合,构建PLA超细纤维复合吸声材料,探究了纤维形貌及超细纤维膜厚度对材料吸声性能的影响,结果表明,多孔纤维及较厚的纤维膜可以有效增强吸声性能。PLA超细纤维复合吸声材料的构建为后续新型高效吸声材料的设计开发提供一定的理论基础。  相似文献   

10.
将不同含量的聚丁二酸丁二酯(PBS)、碳酸钙(CaCO3)/滑石粉(Talc)、聚乳酸(PLA)与聚对苯二甲酸-己二酸丁二酯(PBAT)进行熔融共混改性,研究各组分含量对PBAT/PBS/PLA共混材料加工性能、拉伸性能及其吹塑薄膜的拉伸性能、直角撕裂强度和热封强度的影响。采用熔体流动速率(MFR)仪、万能试验机、热封试验仪、差示扫描量热仪对PBAT共混薄膜的加工性能、力学性能和热封性能等进行测试。结合3因素3水平设计正交试验来优化试样配方,并对试验结果进行了正交试验极差分析。结果表明,PBAT/PBS/PLA共混材料的MFR值均在2.6~4.3 g/10 min范围内,薄膜吹塑成型加工稳定性良好。根据薄膜力学性能极差分析结果提出了最佳配方:PBAT含量为100质量份、PBS含量为10质量份、CaCO3/Talc质量比为10/10和PLA含量为2质量份,验证试验结果表明,该配方制备的吹塑薄膜各项力学性能最高,横向、纵向拉伸强度分别为23.2 MPa和27.3 MPa,横向、纵向断裂伸长率分别为988%和1 137%,横向、纵向直角撕裂强度分别...  相似文献   

11.
TiO_2/ZnO超细粉体共混改性PET的流变性能   总被引:1,自引:0,他引:1  
将改性的二氧化钛/氧化锌(TiO2/ZnO)超细复合粉体应用于聚对苯二甲酸乙二醇酯(PET)的共混改性,研究了改性PET的流变性能及其纤维的力学性能。结果表明:改性PET共混物为非牛顿假塑性流体,其表观粘度随剪切速率的增大而减小;随着超细粉体含量增大,改性PET共混物非牛顿流动指数下降,熔体粘度对温度的敏感性增大,流变性能改善;当超细粉体质量分数为5%时,改性PET共混物粘流活化能可达81.5 kJ/mol;随着超细复合粉体添加量增大,改性PET纤维断裂强度下降。  相似文献   

12.
采用静电纺丝技术,以特殊设计的金属丝螺旋盘绕滚筒作为接收装置,制备了具有一定取向的丝素蛋白(SF)-聚乙烯醇(PVA)共混纳米纤维材料。利用扫描电子显微镜(SEM)对纤维形貌进行观察,并通过Image-Pro Plus软件对纤维细度进行测试,探讨了SF与PVA的配比以及纺丝电压、接收距离等静电纺丝参数对所得纳米纤维形貌、细度及其分布的影响。结果表明:将质量浓度为25 kg/L的SF与质量分数为8%的PVA以质量比15∶3.2共混,并采用20 kV的纺丝电压和13 cm的接收距离静电纺时,所得纳米纤维的平均直径约为238 nm,且直径分布较为均匀。采用该法制得的纳米纤维材料具有一定的纤维取向,有利于细胞生长,可应用于生物医药领域。  相似文献   

13.
以聚乳酸二元醇(PLA-OH)和六亚甲基二异氰酸酯(HDI)为原料,2,2-二羟甲基丁酸(DMBA)为亲水扩链剂合成了亲水扩链剂含量不同的聚乳酸(PLA)基水性聚氨酯(PLA-WPU)乳液,制备了PLA-WPU胶膜和超细纤维合成革。结果表明,随DMBA含量的增加,PLA-WPU乳液粒径减小、固含量增大,PLA-WPU超细纤维合成革拉伸强度和最大负荷增大,水接触角减小。当DMBA含量为5.5%时,PLA-WPU乳液固含量达到35.4%,粒径为196.37 nm,PLA-WPU超细纤维合成革的拉伸强度提高到29.9 MPa,约为超细纤维基布的1.7倍,水接触角降低到73°。  相似文献   

14.
武永爱 《塑料科技》2020,48(10):33-35
使用熔融共混法制备了聚乳酸(PLA)/聚己二酸丁二醇酯-对苯二甲酸对苯二甲酸酯(PBAT)/Lubtop共混纤维,研究了Lubtop对PLA/PBAT的增容效果以及PLA/PBAT/Lubtop共混纤维的各项性能。研究表明:Lubtop在300℃以下并没有从体系中析出,说明Lubtop能够很好并稳定地增容PLA/PBAT体系,PBAT的加入能够提升PLA的热稳定性。SEM分析表明,PLA/PBAT/Lubtop共混纤维表面整体比较平滑、排列整齐,但是在纤维断面可以发现少许缺陷。从线密度、断裂强度测试结果可以发现,PBAT可降低PLA的强度,但是PLA/PBAT/Lubtop共混纤维的韧性有所提升。  相似文献   

15.
分别采用物理添加和固载的方式在聚乳酸(PLA)基体当中引入聚硅氧烷(PSQ)粒子,并以此为基料进行电纺串珠结构的PLA纤维薄膜构筑。结果表明,PSQ的引入有利于串珠结构纤维的形成,并且串珠结构的形成使得PLA纤维膜的水接触角和孔隙率都明显上升,特别是PSQ的固载化处理,使得纤维膜的水接触角和孔隙率分别达到158°和54%,相对于单纯PLA纤维膜分别提高了5%和50%,进而使得纤维膜的疏水性能和油通量得到明显提升;此外,PSQ在PLA体系当中的固载,抑制了其在水解过程中的迁移,使得其可以长期保留在纤维膜当中发挥提升PLA疏水性能的作用,进而使得固载PSQ的PLA(PLA-PSQ)纤维膜体现出最佳的耐水解性能。  相似文献   

16.
以聚苯硫醚(PPS)和聚丙烯(PP)为原料,采用熔融共混纺丝法制备PPS/PP共混海岛纤维,经对二甲苯溶除剥离基体相PP,制得PPS超细纤维;研究了共混纺丝温度、共混比例、拉伸、溶解剥离对PPS超细纤维形态结构的影响。结果表明:PPS/PP最佳共混纺丝温度为290~300℃;随着PPS/PP质量比增大,PPS超细纤维直径逐渐变大,PPS/PP质量比从30/70增至60/40时,PPS超细纤维平均直径从228 nm增至408nm;当PPS/PP质量比大于60/40时,开始出现相转变现象;提高拉伸倍数有利于PPS超细纤维的细化,PPS/PP质量比为40/60时,3倍拉伸得到PPS超细纤维的直径分布范围为158~488 nm,平均直径为312 nm,大于3倍拉伸时,易出现毛丝断丝现象;当对二甲苯体积与共混纤维质量比为500∶1时,PPS超细纤维的最佳剥离温度为120℃、剥离时间2 h。  相似文献   

17.
先通过熔融共混方法制备聚乳酸/聚丁二酸丁二醇酯(PLA/PBS)共混材料,然后将该共混材料加入微纳层叠共挤出设备中,通过该设备使PBS在PLA基体中原位成纤,制备PLA/PBS原位成纤复合材料;进一步对该原位成纤复合材料进行扫描电子显微镜、机械性能、差热量热分析等研究。结果表明,PBS在PLA基体中实现原位成纤,且PBS在低含量时也能够形成纤维,当PBS质量分数为10%时,PBS纤维的直径为1.16~1.52μm,随着PBS含量的增加,PBS纤维直径逐渐增大;PBS的加入提高了PLA的断裂伸长率,当PBS质量分数为30%时,PLA的断裂伸长率提高近300%,但降低了PLA的拉伸强度;PBS经原位成纤后,PBS的结晶度及熔融温度得到提高,PBS纤维能更好地为PLA提供一定的晶核,使得PLA的冷结晶温度降低。  相似文献   

18.
以聚乳酸(PLA)、羟基磷灰石(HA)为主要原料,氯化钠为致孔剂,采用溶液共混-粒子沥滤法制备了PLA/HA复合多孔生物支架,并测试研究了该PLA/HA多孔支架的孔隙率、孔隙连通率及力学性能。结果表明:PLA/HA(85/15)复合多孔支架的孔隙率略低于纯PLA多孔支架,可达到81.6%,可以满足组织工程对支架材料的要求。另外,PLA/HA支架材料的弯曲强度和压缩强度均在PLA与HA的质量比为85/15时达到最大值,分别为76.1和75.7 MPa。  相似文献   

19.
根据FZ/T 01057.2—2007,FZ/T 01057.3—2007,FZ/T 01057.4—2007,FZ/T 01057.8—2012标准,采用燃烧法、显微镜法、溶解法和红外光谱法对聚3-羟基丁酸-戊酸酯/聚乳酸(PHBV/PLA)共混纤维进行了鉴别。结果表明:PHBV/PLA共混纤维的燃烧特征及显微镜下观察的表观和截面形态与常见的合成纤维的特征相似,燃烧特征的具体表现为靠近火焰时熔缩,接触火焰时有熔滴现象且冒白烟,离开火焰时继续燃烧,燃烧时具有特异气味,残留物呈黑色硬块状; PHBV/PLA共混纤维的横截面形态为近似圆形或略呈多边形,纵面形态为表面光滑或略有不平整,未见较深沟槽;使用燃烧法和显微镜法,能够较易将PHBV/PLA共混纤维和棉、毛等天然纤维、粘胶纤维等再生纤维素纤维相区别;PHBV/PLA共混纤维在常温下溶于98%硫酸、二氯甲烷,70℃下溶于甲酸/氯化锌溶液,通过溶解法,可将PHBV/PLA共混纤维和涤纶、锦纶、腈纶、丙纶等常见合成纤维相区别;PHBV/PLA共混纤维在1 722 cm~(-1)和1 748 cm~(-1)处出现了双吸收峰,PLA纤维仅在1 748 cm~(-1)处出现了吸收峰,均属于酯基中羰基的伸缩振动吸收峰,二者的红外光谱存在显著差异。  相似文献   

20.
《塑料科技》2017,(2):59-62
采用熔融共混法制备了由核壳结构丙烯酸酯类冲击改性剂(ACR)和增塑剂单硬脂酸甘油酯(GMS)增韧增塑改性的聚乳酸(PLA),固定GMS用量为20%,研究了ACR对PLA/GMS/ACR共混体系相容性、力学性能以及流变行为的影响。结果表明:ACR的壳层与PLA具有部分相容性;随着ACR用量的增加,PLA/GMS/ACR共混物的冲击强度先增大后减小,当ACR用量为10%时,共混物的冲击强度最大,为63.7 kJ/m~2,断裂伸长率最大达到100%,与PLA/GMS相比,PLA/GMS/ACR共混物的储能模量和复数黏度均随着ACR用量的增加而提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号