首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We explore the possibilities for refrigerants having low global warming potential (GWP). A set of about 1200 candidate fluids is identified from more than 56 000 small molecules examined by applying screening criteria to estimates for GWP, flammability, stability, toxicity, and critical temperature. Methodologies for this screening have been presented in earlier works and are summarized here. The fluids with critical temperatures between 300 K and 400 K (i.e., those that could be used in current types of equipment with minor modifications) number 62. The fluids include halogenated olefins; compounds containing oxygen, nitrogen, or sulfur; as well as carbon dioxide. We discuss the tradeoffs presented by these 62 candidates, considering their thermodynamic properties and their stability and toxicity characteristics. No fluid is ideal in all regards—all have one or more negative attributes: poor thermodynamic properties, toxicity, chemical instability, low to moderate flammability, or very high operating pressures.  相似文献   

2.
Heat exchangers with phase-change achieve minimal dissipation when there is only a small temperature difference between the inlet and the outlet on the side of the sensible heat transfer medium. However, this does not usually occur in applications where these heat exchangers are typically used. In order to overcome this issue, an innovative prototype heat pump was realised. The heat pump was equipped with switchable storage devices to adapt the high temperature difference of the application to small temperature differences in the condenser. This way, the dissipation in the condenser was minimised, which led to COP increases by reducing the required mean pressure in the condenser. The use of storage devices resulted in measured efficiency improvements of 10%–50% in the prototype. With the described set-up, it is possible to approach the maximal thermodynamically possible COP, which makes an adaptation of the theoretical assessment of heat pumps necessary.  相似文献   

3.
Ammonia–water hybrid absorption–compression heat pumps (HACHP) are a promising technology for development of efficient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129 °C, and 140 bar up to 147 °C. If the compressor discharge temperature limit is increased to 250 °C and the vapour water content constraint is removed, this becomes: 182 °C, 193 °C and 223 °C.  相似文献   

4.
This paper presents the experimental heat transfer coefficients and pressure drops measured during refrigerant HFC32 condensation inside a commercial Brazed Plate Heat Exchanger (BPHE) and compares this data with similar measurements previously obtained for refrigerant HFC410A to assess its capability as low GWP substitute for HFC410A in medium size chillers and heat pumps. The effects of saturation temperature, refrigerant mass flux, and vapour super-heating are investigated. HFC32 exhibits heat transfer coefficients much higher and frictional pressure drop slightly higher than those of HFC410A. Therefore, considering that HFC32 exhibits a GWP just one-third that of HFC410A, taking into account also its good thermodynamic properties, it seems to be a very promising low GWP substitute for HFC410A in medium size chillers and heat pumps.  相似文献   

5.
The surface tension of R1243zf, R1234ze(Z), and R1233zd(E) were measured at temperatures from 270 K to 360 K by an experimental apparatus based on the differential capillary rise method. The deviation between the measured surface tension of R134a and R245fa and the calculated surface tension with REFPROP 9.1 (Lemmon et al., 2013) was ±0.13 mN m−1, which is less than the estimated propagated uncertainty in surface tension of ±0.2 mN m−1. Eleven points, thirteen points, and ten points of surface tension data were provided for R1243zf, R1234ze(Z), and R1233zd(E), respectively, in this paper. The measured data and the estimated surface tension using the methods of Miller, 1963, Miqueu et al., 2000, and Di Nicola et al. (2011) agree within the standard deviation of ±0.43 mN m−1. The empirical correlations that represent the measured data within ±0.14 mN m−1 were proposed for each refrigerant.  相似文献   

6.
Blends of CO2 with ten low-global warming potential (GWP) working fluids are evaluated for use in a heat pump water heater. The effects that the discharge pressure, component ratio, hot-water outlet temperature and chilled water inlet temperature have on the coefficient of performance (COP) of heat pump are analyzed when the pinch point of the heat exchange is considered. It is found that temperature glide of zeotropic mixture has a good thermal match with the temperature change of water as two pinch points appear in the gas cooler/condenser or evaporator. The good thermal match in the heat exchangers promotes the system COP. Addition of low-GWP working fluids to pure CO2 can reduce the high-side pressure. The results show that CO2/R41 and CO2/R32 are suitable candidates for heat pump water heaters because of their high COP and low high-side pressure in comparison with those of a pure CO2 cycle.  相似文献   

7.
R1234yf and R1234ze(E) have been proposed as alternatives for R134a in order to work with low GWP refrigerants, but this replacement results generally in a decrease of the performance. For this reason, it is interesting to explore ways to improve the system performance using these refrigerants. In this paper, a comparative study in terms of energy performance of different single stage vapour compression configurations using R1234yf and R1234ze(E) as working fluids has been carried out. The most efficient configuration is the one which uses an expander or an ejector as expansion device. On the other hand, using an internal heat exchanger in a cycle which replaces the expansion valve by an expander or an ejector could produce a detrimental effect on the COP. However, for all the configurations the introduction of an internal heat exchanger produces a significant increment on the cooling capacity.  相似文献   

8.
R1234ze(E), trans-1, 3, 3, 3-tetrafluoropropene, is a fluorinated propene isomer which may be a substitute of R134a for refrigeration applications. R1234ze(E) has a much lower GWP100-years than that of R134a. In this paper, the local heat transfer coefficient during condensation of R1234ze(E) is investigated in a single minichannel, horizontally arranged, with hydraulic diameter equal to 0.96 mm. Since the saturation temperature drop directly affects the heat transfer rate, the pressure drop during adiabatic two phase flow of R1234ze(E) is also measured. Predictive models are assessed both for condensation heat transfer and pressure drop. A comparative analysis is carried out among several fluids (R1234ze(E), R32, R134a and R1234yf) starting from experimental data collected at the same conditions and using the Performance Evaluation Criteria (PEC) named Penalty Factor (PF) and Total Temperature Penalization (TTP) to rank the tested refrigerants in forced convective condensation.  相似文献   

9.
In this study, nucleate boiling heat transfer coefficients (HTCs) of HFO1234yf HFC134a are measured on a flat plain, Turbo-B, Turbo-C, and Thermoexcel-E surfaces. All data are taken at the liquid pool temperature of 7 °C on small flat horizontal square copper plates (9.53 mm × 9.53 mm) at heat fluxes from 10 kW m−2 to 200 kW m−2 with an interval of 10 kW m−2. Test results show that nucleate boiling HTCs of HFO1234yf on all four surfaces are similar to those of HFC134a at all heat fluxes tested in this study. At heat fluxes below 150 kW m−2, Thermoexcel-E surface shows the highest heat transfer performance and hence is the best surface for the manufacture of the evaporators in refrigeration and air-conditioning equipment. On the other hand, at high heat fluxes above 150 kW m−2, Turbo-B and Turbo-C show better heat transfer performance than Thermoexcel-E and hence are good for electronic cooling applications. Overall, HFO1234yf is a good long term candidate with excellent environmental properties to replace successfully HFC134a from the view point of pool boiling heat transfer. Hence HFO1234yf can be readily applied to the conventional evaporators designed for HFC134a.  相似文献   

10.
Electrical heat pumps for sanitary hot water production achieve a high performance with a good matching of water and refrigerant temperature profiles during the heat rejection stage, as it happens in CO2 systems. This work considers the thermodynamic possibility to adapt the condenser pressure of a propane heat pump to maximize the COP, while producing sanitary hot water up to 60 °C from a heat sink equal to 15 or 25 °C. The performance of the heat pump is calculated through specific models which, in combination with a TRNSYS model of the whole system, allowed to assess its seasonal performance for a hotel in Strasbourg, also varying the control logic and the size of the storage tank. Results obtained led to the conclusion that, for achieving a high seasonal performance, the control logic of the tank has the largest influence.  相似文献   

11.
R1234ze(E) has a GWP<1 and a normal boiling temperature approximately 7.3 °C lower than that of R134a; it represents an interesting candidate for its replacement as working fluid in refrigerating machines. The refrigerant charge minimization in refrigerating and air conditioning equipment is a key issue for the new environmental challenges. Mini microfin tubes represent an optimal solution for both heat transfer enhancement and charge minimization tasks. This paper presents an experimental study of R1234ze(E) flow boiling inside a mini microfin tube with internal diameter at the fin tip of 3.4 mm. The experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m−2 s−1 and 940 kg m−2 s−1, the vapour quality from 0.2 to 0.99 at three different heat fluxes: 10, 25, and 50 kW m−2. The experimental results are then compared with those obtained for the more traditional R134a.  相似文献   

12.
This paper presents experimental data and analysis comparing the performance of an R410A ejector vapor compression system to those of a liquid-fed evaporator system and a conventional expansion valve system. The objective was to quantify separately two major improvements of the ejector system: work recovery and liquid-fed evaporator. The ejector system was first compared to a system with liquid-fed evaporator at matching cooling capacities and revealed improvements from 1.9% to 8.4% solely due to the work recovery of the ejector. When compared to a conventional expansion valve system at the same cooling capacity, the ejector setup improved COP from 8.2% to 14.8% due to simultaneous benefits of liquid-fed evaporator and work recovery. Overall ejector efficiencies from 12.2% to 19.2% were achieved.  相似文献   

13.
Estimates are provided for R-1234ze(Z) of its: (1) critical temperature, pressure, and density, acentric factor, and ideal gas specific heat at constant pressure, and (2) various thermodynamic and transport properties, which are used to predict the performance potential of R-1234ze(Z) in high-temperature heat pumping applications. In particular, for an idealized cycle, the coefficient of performance and volumetric heating capacity for R-114 are 3.24 and 1667 kW m−3, respectively, and for R-1234ze(Z) are 3.40 and 1645 kW m−3, respectively. The attractiveness of R-1234ze(Z) is confirmed further through heat exchanger simulations. This paper demonstrates that R-1234ze(Z) deserves further consideration as a possible R-114 replacement.  相似文献   

14.
This paper proposes a thermoelectric-assisted vapor compression cycle (TVCC) for applications in air-source heat pump systems which could enhance the heating capacity of the system. Performances of TVCC are calculated and then compared with that of basic vapor compression cycle (BVCC). The simulation results show that when coefficients of performance (COPs) of the two cycles are almost equal, the TVCC under maximum COP condition of the thermoelectric modules still performs better than BVCC by 13.0% in heating capacity through selecting the appropriate intermediate temperature. In addition, the TVCC can also achieve an improvement of 16.4%–21.7% in both the heating COP and capacity when compared with the BVCC with an assistant electric heater that is provided with the equivalent power input of thermoelectric heat exchanger. Thus, the TVCC could be beneficial to the applications in small heat pumps if there is always need for auxiliary electric heat.  相似文献   

15.
Two-stage vapor compression technology has high potential of performance improvement for cold climate heat pumps, and there are several types of inter-stage configurations that need to be evaluated before making a choice. A general model of these configurations is first derived from a subcooler cycle and then is extended to be capable of evaluating many other inter-stage configurations by employing an “input domain”. The model is solved with a sequential algorithm and an analytical initial solution of the intermediate pressure is presented. After an experimentally validation with additional calculations of the subcooling parameter, the evaporating and condensing pressure, this general model is then used in the performance comparison and analysis of eight different inter-stage configurations. At last, case studies show that, this general model is capable of performing performance comparison among cycles with different types of inter-stage configurations, as well as refrigerant selection and operational analysis.  相似文献   

16.
Simplified explicit calculation algorithms were proposed for determining the performance of the condenser, evaporator and air cooler in a vapour-compression system based on a zone-model approach. It was assumed that the fluid temperature changes in the sub-cooled and superheated portions were small and that the wet portion of an air cooler only occurred in the entire saturated portion if it was not fully-dry. With R134a employed as the refrigerant, the simulated coil capacity based on the present modelling approach were compared with those based on a multi-node numerical approach at different refrigerant mass flow rates. It was found that the errors in the simulated specific enthalpy change of the refrigerant across the coil did not exceed 3.6% in all cases. In particular, the errors incurred by employing the present modelling approach in simulating the capacity and compressor power input of a sample water-cooled chiller at different condenser and evaporator fluid entering temperatures were less than 2.7% and 3.1% respectively. This showed that the present approach could be a good choice for improving the computation efficiency of a vapour-compression system significantly while the accuracy of the simulation could still be maintained at an acceptable level.  相似文献   

17.
Nanofluids technology has been rapidly developing over the last two decades. In this paper, the performance of a lithium bromide (LiBr) solution with and without nanoparticles in plate heat exchanger (PHE) for various chevron angles and mass flow rates was investigated. As a result, the heat transfer rate and the overall heat transfer coefficient in 60°/60° PHE is over 100% higher than that of 30°/30° PHE, and the effectiveness of the PHE in 60°/60° PHE is about 70% higher than that of 30°/30° PHE. By using nanoparticle in the working fluid, the heat transfer performance can increase significantly. The heat transfer rate of 3 vol.% nanofluids increased about 3–8% compare to that of LiBr solution for all chevron PHEs. Besides, the 60°/60° PHE using 3 vol.% nanofluids produced the largest heat transfer rate and heat exchange effectiveness under given operating conditions.  相似文献   

18.
This paper presents an approach to quantify the effect of evaporator maldistribution on operating costs of air–water heat pumps. In the proposed simulation model maldistribution is induced by two parameters describing refrigerant phase and air flow distribution. Annual operating costs are calculated based on heat pump performance at distinct operating conditions. Results show that percentage increase of operating costs is similar for the three considered climate zones, even though the effect of maldistribution on heat pump performance varies with operating conditions. Differences in terms of absolute cost increase for the climate zones arise mainly due to a varying number of operating hours. Absolute cost increase is considerable in the average and especially colder climate zone and can only partly be reduced by enlarging the evaporator.  相似文献   

19.
When an air source heat pump (ASHP) unit operates for space heating at a frosting environment, periodic defrosting is necessary to maintain a high system performance. To defrost efficiently, it is necessary to find an effective defrosting control method. In this paper, an experiment was carried out on an ASHP unit with a capillary tube as a throttle device, under simulated frosting and defrosting conditions using time control defrosting method, and the experimental results are firstly presented. Secondly, a novel defrosting control method based on the degree of refrigerant superheat (DS) is reported. To validate the novel defrosting control method, a further experiment was conducted on another ASHP unit with an electronic expansion valve (EEV) as a throttle device, under simulated frosting and defrosting conditions. The experimental results demonstrated that when applying the novel defrosting control method, defrosting was initiated before the operating performances of ASHP unit rapidly deteriorated, which was more reasonable.  相似文献   

20.
A multi-split VRF system operates unsteadily most of time due to the constantly varying refrigerant flow rates of associated indoor units. VRF systems require a different approach from conventional techniques to detect faults, which have developed based on steady-state operations. In this paper, two fault detection techniques are proposed. Their advantage is that they do not require the test data to be preprocessed to obtain steady-state data. The first technique is applied to detect heat exchanger fouling by a state observer, and the other technique is used to detect valve sticking by temperature variance. These techniques were not chosen haphazardly but were derived from physical reasoning. Their validity was confirmed by test data. The methodology developed in this study can be applied similarly to other HVAC equipment that operates mostly in transient states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号