共查询到20条相似文献,搜索用时 15 毫秒
1.
Yunxia Ma Miljana Nenkov Desiree Charlotte Schrder Mohamed Abubrig Nikolaus Gassler Yuan Chen 《International journal of molecular sciences》2021,22(21)
Fibulins (FBLNs), interacting with cell adhesion receptors and extracellular matrix (ECM) components, play multiple roles in ECM structures and tissue functions. Abnormal expression of FBLN2, one of the fibulin family members, contributes to tumor initiation and development. However, the function of FBLN2 in human non-small cell lung cancer (NSCLC) has not yet been elucidated. In this study, we found that FBLN2 was downregulated in 9 out of 11 lung cancer cell lines compared to normal bronchial epithelial cells, which was associated with DNA hypermethylation. Primary lung squamous cell carcinoma expressed significantly more FBLN2 protein compared to adenocarcinoma (p = 0.047). Ectopic expression of FBLN2 led to decreased cell proliferation, migration and invasion, accompanied by inactivated MAPK/ERK and AKT/mTOR pathways, while FBLN2 siRNA knockdown resulted in an opposite biological behaviour in NSCLC cells. Additionally, overexpression of FBLN2 led to dysregulation of cell adhesion molecules, ECM markers and a panel of lysate/exosome-derived-microRNAs, which are involved in cell adhesion and ECM remodelling. Taken together, our data indicate that FBLN2 is methylated and exerts a tumor suppressor function through modulation of MAPK/ERK and AKT pathways and regulation of cell adhesion and ECM genes. Moreover, FBLN2 might be a potential biomarker for the sub-classification of NSCLC. 相似文献
2.
3.
Mohammad Mojtaba Sadeghi Mohamed F. Salama Yusuf A. Hannun 《International journal of molecular sciences》2021,22(11)
Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC. 相似文献
4.
microRNAs (miRNAs), endogenous suppressors of target mRNAs, are deeply involved in every step of non-small cell lung cancer (NSCLC) development, from tumor initiation to progression and metastasis. They play roles in cell proliferation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, migration, invasion, and metastatic colonization, as well as immunosuppression. Due to their versatility, numerous attempts have been made to use miRNAs for clinical applications. miRNAs can be used as cancer subtype classifiers, diagnostic markers, drug-response predictors, prognostic markers, and therapeutic targets in NSCLC. Many challenges remain ahead of their actual clinical application; however, when achieved, the use of miRNAs in the clinic is expected to enable great progress in the diagnosis and treatment of patients with NSCLC. 相似文献
5.
Karin Zins Anita Thomas Trevor Lucas Mouldy Sioud Seyedhossein Aharinejad Dietmar Abraham 《International journal of molecular sciences》2013,14(9):17958-17971
The growth and vascularization of prostate cancer is dependent on interactions between cancer cells and supporting stromal cells. The primary stromal cell type found in prostate tumors is the carcinoma-associated fibroblast, which produces placental growth factor (PlGF). PlGF is a member of the vascular endothelial growth factor (VEGF) family of angiogenic molecules and PlGF mRNA levels increase after androgen deprivation therapy in prostate cancer. In this study, we show that PlGF has a direct dose-dependent proliferative effect on human PC-3 prostate cancer cells in vitro and fibroblast-derived PlGF increases PC-3 proliferation in co-culture. In xenograft tumor models, intratumoral administration of murine PlGF siRNA reduced stromal-derived PlGF expression, reduced tumor burden and decreased the number of Ki-67 positive proliferating cells associated with reduced vascular density. These data show that targeting stromal PlGF expression may represent a therapeutic target for the treatment of prostate cancer. 相似文献
6.
Georgios Tsakonas Andreas Koulouris Dominika Kazmierczak Johan Botling Cristian Ortiz-Villalon Helena Nord Magnus Lindskog Martin Sandelin Patrick Micke Per Hydbring Simon Ekman 《International journal of molecular sciences》2023,24(1)
Distant spreading of tumor cells to the central nervous system in non-small cell lung cancer (NSCLC) occurs frequently and poses major clinical issues due to limited treatment options. RNAs displaying differential expression in brain metastasis versus primary NSCLC may explain distant tumor growth and may potentially be used as therapeutic targets. In this study, we conducted systematic microRNA expression profiling from tissue biopsies of primary NSCLC and brain metastases from 25 patients. RNA analysis was performed using the nCounter Human v3 miRNA Expression Assay, NanoString technologies, followed by differential expression analysis and in silico target gene pathway analysis. We uncovered a panel of 11 microRNAs with differential expression and excellent diagnostic performance in brain metastasis versus primary NSCLC. Five microRNAs were upregulated in brain metastasis (miR-129-2-3p, miR-124-3p, miR-219a-2-3p, miR-219a-5p, and miR-9-5p) and six microRNAs were downregulated in brain metastasis (miR-142-3p, miR-150-5p, miR-199b-5p, miR-199a-3p, miR-199b-5p, and miR-199a-5p). The differentially expressed microRNAs were predicted to converge on distinct target gene networks originating from five to twelve core target genes. In conclusion, we uncovered a unique microRNA profile linked to two target gene networks. Our results highlight the potential of specific microRNAs as biomarkers for brain metastasis in NSCLC and indicate plausible mechanistic connections. 相似文献
7.
Renato Jos da Silva-Oliveira Izabela Natalia Faria Gomes Luciane Sussuchi da Silva Andr van Helvoort Lengert Ana Carolina Laus Matias Eliseo Melendez Carla Carolina Munari Fernanda de Paula Cury Giovanna Barbarini Longato Rui Manuel Reis 《International journal of molecular sciences》2022,23(14)
Background: EGFR mutations are present in approximately 15–50% of non-small cell lung cancer (NSCLC), which are predictive of anti-EGFR therapies. At variance, NSCLC patients harboring KRAS mutations are resistant to those anti-EGFR approaches. Afatinib and allitinib are second-generation pan-EGFR drugs, yet no predictive biomarkers are known in the NSCLC context. In the present study, we evaluated the efficacy of pan-EGFR inhibitors in a panel of 15 lung cancer cell lines associated with the KRAS mutations phenotype. Methods: KRAS wild-type sensitive NCI-H292 cell line was further transfected with KRAS mutations (p.G12D and p.G12S). The pan-EGFR inhibitors’ activity and biologic effect of KRAS mutations were evaluated by cytotoxicity, MAPK phospho-protein array, colony formation, migration, invasion, and adhesion. In addition, in vivo chicken chorioallantoic membrane assay was performed in KRAS mutant cell lines. The gene expression profile was evaluated by NanoString. Lastly, everolimus and pan-EGFR combinations were performed to determine the combination index. Results: The GI50 score classified two cell lines treated with afatinib and seven treated with allitinib as high-sensitive phenotypes. All KRAS mutant cell lines demonstrated a resistant profile for both therapies (GI50 < 30%). The protein array of KRAS edited cells indicated a significant increase in AKT, CREB, HSP27, JNK, and, importantly, mTOR protein levels compared with KRAS wild-type cells. The colony formation, migration, invasion, adhesion, tumor perimeter, and mesenchymal phenotype were increased in the H292 KRAS mutated cells. Gene expression analysis showed 18 dysregulated genes associated with the focal adhesion-PI3K-Akt-mTOR-signaling correlated in KRAS mutant cell lines. Moreover, mTOR overexpression in KRAS mutant H292 cells was inhibited after everolimus exposure, and sensitivity to afatinib and allitinib was restored. Conclusions: Our results indicate that allitinib was more effective than afatinib in NSCLC cell lines. KRAS mutations increased aggressive behavior through upregulation of the focal adhesion-PI3K-Akt-mTOR-signaling in NSCLC cells. Significantly, everolimus restored sensibility and improved cytotoxicity of EGFR inhibitors in the KRAS mutant NSCLC cell lines. 相似文献
8.
Olga V. Kovaleva Madina A. Rashidova Daria V. Samoilova Polina A. Podlesnaya Rasul M. Tabiev Valeria V. Mochalnikova Alexei Gratchev 《International journal of molecular sciences》2021,22(1)
There is an urgent need for identification of new prognostic markers and therapeutic targets for non-small cell lung cancer (NSCLC). In this study, we evaluated immune cells markers in 100 NSCLC specimens. Immunohistochemical analysis revealed no prognostic value for the markers studied, except CD163 and CD206. At the same time, macrophage markers iNOS and CHID1 were found to be expressed in tumor cells and associated with prognosis. We showed that high iNOS expression is a marker of favorable prognosis for squamous cell lung carcinoma (SCC), and NSCLC in general. Similarly, high CHID1 expression is a marker of good prognosis in adenocarcinoma and in NSCLC in general. Analysis of prognostic significance of a high CHID1/iNOS expression combination showed favorable prognosis with 20 months overall survival of patients from the low CHID1/iNOS expression group. For the first time, we demonstrated that CHID1 can be expressed by NSCLC cells and its high expression is a marker of good prognosis for adenocarcinoma and NSCLC in general. At the same time, high expression of iNOS in tumor cells is a marker of good prognosis in SCC. When used in combination, CHID1 and iNOS show a very good prognostic capacity for NSCLC. We suggest that in the case of lung cancer, tumor-associated macrophages are likely ineffective as a therapeutic target. At the same time, macrophage markers expressed by tumor cells may be considered as targets for anti-tumor therapy or, as in the case of CHID1, as potential anti-tumor agents. 相似文献
9.
In traditional medicine, different parts of plants, including fruits, have been used for their anti-inflammatory and anti-oxidative properties. Plant-based foods, such as fruits, seeds and vegetables, are used for therapeutic purposes due to the presence of flavonoid compounds. Proanthocyanidins (PCs) and anthocyanins (ACNs) are the major distributed flavonoid pigments in plants, which have therapeutic potential against certain chronic diseases. PCs and ACNs derived from plant-based foods and/or medicinal plants at different nontoxic concentrations have shown anti-non-small cell lung cancer (NSCLC) activity in vitro/in vivo models through inhibiting proliferation, invasion/migration, metastasis and angiogenesis and by activating apoptosis/autophagy-related mechanisms. However, the potential mechanisms by which these compounds exert efficacy against nicotine-induced NSCLC are not fully understood. Thus, this review aims to gain insights into the mechanisms of action and therapeutic potential of PCs and ACNs in nicotine-induced NSCLC. 相似文献
10.
Making the Rounds: Exploring the Role of Circulating Tumor DNA (ctDNA) in Non-Small Cell Lung Cancer
Misty Dawn Shields Kevin Chen Giselle Dutcher Ishika Patel Bruna Pellini 《International journal of molecular sciences》2022,23(16)
Advancements in the clinical practice of non-small cell lung cancer (NSCLC) are shifting treatment paradigms towards increasingly personalized approaches. Liquid biopsies using various circulating analytes provide minimally invasive methods of sampling the molecular content within tumor cells. Plasma-derived circulating tumor DNA (ctDNA), the tumor-derived component of cell-free DNA (cfDNA), is the most extensively studied analyte and has a growing list of applications in the clinical management of NSCLC. As an alternative to tumor genotyping, the assessment of oncogenic driver alterations by ctDNA has become an accepted companion diagnostic via both single-gene polymerase chain reactions (PCR) and next-generation sequencing (NGS) for advanced NSCLC. ctDNA technologies have also shown the ability to detect the emerging mechanisms of acquired resistance that evolve after targeted therapy. Furthermore, the detection of minimal residual disease (MRD) by ctDNA for patients with NSCLC after curative-intent treatment may serve as a prognostic and potentially predictive biomarker for recurrence and response to therapy, respectively. Finally, ctDNA analysis via mutational, methylation, and/or fragmentation multi-omic profiling offers the potential for improving early lung cancer detection. In this review, we discuss the role of ctDNA in each of these capacities, namely, for molecular profiling, treatment response monitoring, MRD detection, and early cancer detection of NSCLC. 相似文献
11.
Yuanyang Lai Zhipei Zhang Jianzhong Li Dong Sun Yong’an Zhou Tao Jiang Yong Han Lijun Huang Yifang Zhu Xiaofei Li Xiaolong Yan 《International journal of molecular sciences》2013,14(12):24549-24559
We aimed to reveal the true status of epidermal growth factor receptor (EGFR) mutations in Chinese patients with non-small cell lung cancer (NSCLC) after lung resections. EGFR mutations of surgically resected fresh tumor samples from 697 Chinese NSCLC patients were analyzed by Amplification Refractory Mutation System (ARMS). Correlations between EGFR mutation hotspots and clinical features were also explored. Of the 697 NSCLC patients, 235 (33.7%) patients had tyrosine kinase inhibitor (TKIs) sensitive EGFR mutations in 41 (14.5%) of the 282 squamous carcinomas, 155 (52.9%) of the 293 adenocarcinomas, 34 (39.5%) of the 86 adenosquamous carcinomas, one (9.1%) of the 11 large-cell carcinomas, 2 (11.1%) of the 18 sarcomatoid carcinomas, and 2 (28.6%) of the 7 mucoepidermoid carcinomas. TKIs sensitive EGFR mutations were more frequently found in female patients (p < 0.001), non-smokers (p = 0.047) and adenocarcinomas (p < 0.001). The rates of exon 19 deletion mutation (19-del), exon 21 L858R point mutation (L858R), exon 21 L861Q point mutation (L861Q), exon 18 G719X point mutations (G719X, including G719C, G719S, G719A) were 43.4%, 48.1%, 1.7% and 6.8%, respectively. Exon 20 T790M point mutation (T790M) was detected in 3 squamous carcinomas and 3 adenocarcinomas and exon 20 insertion mutation (20-ins) was detected in 2 patients with adenocarcinoma. Our results show the rates of EGFR mutations are higher in all types of NSCLC in Chinese patients. 19-del and L858R are two of the more frequent mutations. EGFR mutation detection should be performed as a routine postoperative examination in Chinese NSCLC patients. 相似文献
12.
Filippo Lococo Massimiliano Paci Cristian Rapicetta Teresa Rossi Valentina Sancisi Luca Braglia Silvio Cavuto Alessandra Bisagni Italia Bongarzone Douglas M. Noonan Adriana Albini Sally Maramotti 《International journal of molecular sciences》2015,16(8):19612-19630
Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR), which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002). Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies. 相似文献
13.
Fascaplysin is a natural product isolated from sponges with a wide range of anticancer activities. However, the mechanism of fascaplysin against NSCLC has not been clearly studied. In this study, fascaplysin was found to inhibit migration by regulating the wnt/β-catenin signaling pathway and reversing the epithelial–mesenchymal transition phenotype. Further research showed that the anti-NSCLC effect of fascaplysin was mainly through the induction of ferroptosis and apoptosis. Fascaplysin-induced ferroptosis in lung cancer cells, evidenced by increased levels of ROS and Fe2+ and downregulation of ferroptosis-associated protein and endoplasmic reticulum stress, was involved in fascaplysin-induced ferroptosis. In addition, ROS was found to mediate fascaplysin-induced apoptosis. Fascaplysin significantly upregulated the expression of PD-L1 in lung cancer cells, and enhanced anti-PD-1 antitumor efficacy in a syngeneic mouse model. Therefore, these results suggest that fascaplysin exerts anticancer effects by inducing apoptosis and ferroptosis in vitro, and improving the sensitivity of anti-PD-1 immunotherapy in vivo. Fascaplysin is a promising compound for the treatment of NSCLC. 相似文献
14.
The epithelial-to-mesenchymal transition (EMT) is important for morphogenesis during development and is mainly induced by transforming growth factor (TGF)-β. In lung cancer, EMT is characterized by the transformation of cancer cells into a mobile, invasive form that can transit to other organs. Here, using a non–small cell lung cancer (NSCLC) cell line, we evaluated the EMT-related effects of the epidermal growth factor receptor inhibitor erlotinib alone and in combination with cilengitide, a cyclic RGD-based integrin antagonist. Erlotinib showed anti-proliferative and inhibitory effects against the TGF-β1–induced EMT phenotype in NSCLC cells. Compared with erlotinib alone, combination treatment with cilengitide led to an enhanced inhibitory effect on TGF-β1–induced expression of mesenchymal markers and invasion in non–small cell lung cancer A549 cells. These results suggest that cilengitide could improve anticancer drug efficacy and contribute to improved treatment strategies to inhibit and prevent EMT-based cancer progression. 相似文献
15.
Clelia Madeddu Clelia Donisi Nicole Liscia Eleonora Lai Mario Scartozzi Antonio Macci 《International journal of molecular sciences》2022,23(12)
Lung cancer is a leading cause of cancer-related deaths worldwide. About 10–30% of patients with non-small cell lung cancer (NSCLC) harbor mutations of the EGFR gene. The Tumor Microenvironment (TME) of patients with NSCLC harboring EGFR mutations displays peculiar characteristics and may modulate the antitumor immune response. EGFR activation increases PD-L1 expression in tumor cells, inducing T cell apoptosis and immune escape. EGFR-Tyrosine Kinase Inhibitors (TKIs) strengthen MHC class I and II antigen presentation in response to IFN-γ, boost CD8+ T-cells levels and DCs, eliminate FOXP3+ Tregs, inhibit macrophage polarization into the M2 phenotype, and decrease PD-L1 expression in cancer cells. Thus, targeted therapy blocks specific signaling pathways, whereas immunotherapy stimulates the immune system to attack tumor cells evading immune surveillance. A combination of TKIs and immunotherapy may have suboptimal synergistic effects. However, data are controversial because activated EGFR signaling allows NSCLC cells to use multiple strategies to create an immunosuppressive TME, including recruitment of Tumor-Associated Macrophages and Tregs and the production of inhibitory cytokines and metabolites. Therefore, these mechanisms should be characterized and targeted by a combined pharmacological approach that also concerns disease stage, cancer-related inflammation with related systemic symptoms, and the general status of the patients to overcome the single-drug resistance development. 相似文献
16.
17.
Pamela Vernocchi Tommaso Gili Federica Conte Federica Del Chierico Giorgia Conta Alfredo Miccheli Andrea Botticelli Paola Paci Guido Caldarelli Marianna Nuti Paolo Marchetti Lorenza Putignani 《International journal of molecular sciences》2020,21(22)
Several studies in recent times have linked gut microbiome (GM) diversity to the pathogenesis of cancer and its role in disease progression through immune response, inflammation and metabolism modulation. This study focused on the use of network analysis and weighted gene co-expression network analysis (WGCNA) to identify the biological interaction between the gut ecosystem and its metabolites that could impact the immunotherapy response in non-small cell lung cancer (NSCLC) patients undergoing second-line treatment with anti-PD1. Metabolomic data were merged with operational taxonomic units (OTUs) from 16S RNA-targeted metagenomics and classified by chemometric models. The traits considered for the analyses were: (i) condition: disease or control (CTRLs), and (ii) treatment: responder (R) or non-responder (NR). Network analysis indicated that indole and its derivatives, aldehydes and alcohols could play a signaling role in GM functionality. WGCNA generated, instead, strong correlations between short-chain fatty acids (SCFAs) and a healthy GM. Furthermore, commensal bacteria such as Akkermansia muciniphila, Rikenellaceae, Bacteroides, Peptostreptococcaceae, Mogibacteriaceae and Clostridiaceae were found to be more abundant in CTRLs than in NSCLC patients. Our preliminary study demonstrates that the discovery of microbiota-linked biomarkers could provide an indication on the road towards personalized management of NSCLC patients. 相似文献
18.
Zhu Z Sun H Ma G Wang Z Li E Liu Y Liu Y 《International journal of molecular sciences》2012,13(2):2025-2035
Bufalin is a class of toxic steroids which could induce the differentiation and apoptosis of leukemia cells, and induce the apoptosis of gastric, colon and breast cancer cells. However, the anti-tumor effects of bufalin have not been demonstrated in lung cancer. In this study we used A549 human lung adenocarcinoma epithelial cell line as the experimental model to evaluate the potential of bufalin in lung cancer chemotherapy. A549 cells were treated with bufalin, then the proliferation was detected by MTT assay and apoptosis was detected by flow cytometry analysis and Giemsa staining. In addition, A549 cells were treated by Akt inhibitor LY294002 in combination with bufalin and the activation of Akt and Caspase-3 as well as the expression levels of Bax, Bcl-2 and livin were examined by Western blot analysis. The results showed that Bufalin inhibited the proliferation of A549 cells and induced the apoptosis of A549 cells in a dose and time dependent manner. Mechanistically, we found that bufalin inhibited the activation of Akt. Moreover, bufalin synergized with Akt inhibitor to induce the apoptosis of A549 cells and this was associated with the upregulation of Bax expression, the downregulation of Bcl-2 and livin expression, and the activation of Caspase-3. In conclusion, our findings demonstrate that bufalin induces lung cancer cell apoptosis via the inhibition of PI3K/Akt pathway and suggest that bufalin is a potential regimen for combined chemotherapy to overcome the resistance of lung cancer cells to chemotherapeutics induced apoptosis. 相似文献
19.
Shu-Lin Chen Ning Xue Mian-Tao Wu Hao Chen Xia He Jian-Pei Li Wan-Li Liu Shu-Qin Dai 《International journal of molecular sciences》2016,17(9)
The purpose of this work is to analyze preoperative serum aspartate aminotransferase (AST) levels and their effect on the prognosis of patients with non-small cell lung cancer (NSCLC) after surgical operation. These analyses were performed retrospectively in patients with NSCLC followed by surgery; participants were recruited between January 2004 and January 2008. All clinical information and laboratory results were collected from medical records. We explored the association between preoperative serum AST and recurrence-free survival (RFS), and the overall survival (OS) of NSCLC patients. Kaplan–Meier analysis and Cox multivariate analysis, stratified by the AST median value, were used to evaluate the prognostic effect. A chi-squared test was performed to compare clinical characteristics in different subgroups. A p-value of ≤0.05 was considered to be statistically significant. A total of 231 patients were enrolled. The median RFS and OS were 22 and 59 months, respectively. The AST levels were divided into two groups, using a cut-off value of 19 U/L: High AST (>19 U/L), n = 113 vs. low AST (≤19 U/L), n = 118. Multivariate analysis indicated that preoperative serum AST > 19 U/L (hazard ratio (HR) = 0.685, 95% confidence interval (CI): 0.493–0.994, p = 0.046 for RFS, HR = 0.646, 95% CI: 0.438–0.954, p = 0.028 for OS) was an independent prognostic factor for both RFS and OS. High preoperative serum AST levels may serve as a valuable marker to predict the prognosis of NSCLC after operation. 相似文献
20.
Cong Zhou Yafang Zou Yuanyuan Zhang Shuang Teng Keping Ye 《International journal of molecular sciences》2022,23(5)
CCN1 is well studied in terms of its functions in injury repair, cell adhesion survival and apoptosis, bacterial clearance and mediation of inflammation-related pathways, such as the TLR2/4 pathways. However, the role of CCN1 protein and its interaction with TLR2/4 pathways in intestinal epithelial cells was not elucidated after Listeria monocytogenes infection. The results of this study confirm that L. monocytogenes infection induced intestinal inflammation and increased the protein expression of CCN1, TLR2, TLR4 and p38, which followed a similar tendency in the expression of genes related to the TLR2/4 pathways. In addition, organoids infected by L. monocytogenes showed a significant increase in the expression of CCN1 and the activation of TLR2/4 pathways. Furthermore, pre-treatment with CCN1 protein to organoids infected by L. monocytogenes could increase the related genes of TLR2/4 pathways and up-regulate the expression of TNF, and increase the count of pathogens in organoids, which indicates that the interaction between the CCN1 protein and TLR2/4 signaling pathways in intestinal epithelial cells occurred after L. monocytogenes infection. This study will provide a novel insight of the role of CCN1 protein after L. monocytogenes infection in the intestine. 相似文献