首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文对应用于直径为φ600mm~φ700mm油气管道机器人进行机构设计及运动控制研究。首先,通过分析现有管道机器人的工作原理,依据课题技术指标,设计了支撑式自适应管道的机器人结构,并详细介绍了其变径和传动原理。其次,建立了管道机器人在管道空间的运动学方程,分析了机器人姿态偏转问题,列出了机器人静力学平衡方程,对机器人通过管道时各行进轮的速度进行分析。再次,采用ADAMS的参数化建模及二次非线性规划算法优化机器人的变径机构,通过对比传动方案,优化了传动机构;借助虚拟样机技术,对机器人的变径范围、行进速度及牵引力进行仿真分析,得到机器人的变径范围可达到φ600~φ700mm,行进轮速度可达到1.196m/min,牵引力为109.0N,验证了设计的合理性。  相似文献   

2.
鉴于流体管道裂纹检测的不易,对一种利用管道内流体介质来驱动的新型管道机器人进行研究。该机器人可根据管道传输介质的流速、压力及摩擦负载的变化,实时对管道机器人的行进速度进行调控;构建了一套电机驱动锥阀的新型管道机器人泄流调速装置,并对其调速机理进行了分析,推导出影响机器人行进速度稳定性的负载和通流面积之间的关系。介绍了以压差和速度为反馈环节的双闭环速度调控机理,为流体压差驱动管道机器人速度调节和控制提供了一套新的解决方案。  相似文献   

3.
针对现有管道机器人行进机构通用性差、结构复杂等问题,设计了一种能够以蠕动和快速运动切换方式在管道中行进,同时能灵便适应管道的水平、竖直、弯曲等形状变化,以及管道直径变化的通用管道机器人行进机构.该行进机构引入气动装置和轮毂电机,结构简单、成本降低,使管道机器人的性能和应用范围得到了进一步的拓展.  相似文献   

4.
为了提高驱动能力和管道通过性,增大变径范围,创新性地设计了一种基于螺旋驱动原理的多节式螺旋双驱动可变径管道机器人结构,以方便实现直径为250~300 mm的管道的探查功能。该机器人由2个螺旋驱动单元和1个中间支撑单元构成,通过刚柔混合变径机构来适应具有50 mm直径变化的管道。在机械系统详细设计及驱动电机初步选型的基础上,着重分析了机器人通过垂直管道的动力学问题,并通过建立虚拟样机模型,对理论分析结果及电机驱动力矩进行了验证。结果表明,该机器人具有优良的管道通过性,为同类型管道机器人的研发提供了技术支持。  相似文献   

5.
介绍一种管道微机器人自润滑轮式驱动器的传动原理和结构。对这种新型微机器人驱动器的行进速度进行试验研究。结果表明,新型微机器人驱动器可以实现微机器人在管道中不同速度的移动行进。  相似文献   

6.
针对人工方式进行核电管道检测与维护存在效率低的问题,将管道机器人技术应用到核电站管道维护中,代替人工进行现场故障监测、异物探测和清理。设计了直径为300 mm的管道机器人的机械结构,分析了机器人在管道中的受力情况以及驱动特性。同时设计了一种全新的单电机全驱动机构,这种设计使机器人整体结构更为紧凑,提高了机器人行进速度以及驱动负载能力。并利用ADAMS动力学仿真软件对机器人驱动特性进行了研究和分析。结果表明,机器人的驱动能力能够满足实际作业需求,并且其驱动能力与摩擦系数、斜坡度有关;其中驱动力与摩擦系数成正比,即摩擦系数越大机器人的驱动力越大;驱动力与斜坡度成反比,即斜坡度越大驱动力越小。该研究结果可为后续机器人优化设计提供理论依据。  相似文献   

7.
楼房自来水旧有金属管道的内衬涂覆可有效避免水在这种管道内输送时的二次污染,从而为直饮水推广提供必要条件,但在内表面处理后没有合适的技术来进行涂覆质量的检查,利用管道机器人可以实现这一目的.文中主要讨论了直径≤50 mm,曲率半径约75 mm管道机器人的机械结构的设计,并分析了机器人在弯道处的通过性.提出了一种新型的管外驱动的方式,极大地提高了机器人的行进速度和负载携带能力.通过采用SMA(shape memory alloy)作为主动导向驱动,在视觉系统的辅助下能够顺利地通过L型和T型管道.该机器人可望具有良好的越障、转弯能力和行进速度.  相似文献   

8.
为提高支撑轮式管道机器人驱动效率、改善其性能,对管道机器人变径机构进行了优化设计。通过变径原理阐述及动力学分析,建立机构优化数学模型。基于ADAMS参数化建模和优化设计功能,以高灵敏度设计参数为优化变量,考虑机构几何学、运动学及动力学约束条件,以变径过程驱动电机转矩最小为目标对其展开优化设计。优化后电机最大输出转矩较优化前减小45.2%,优化效果明显,为管道机器人设计提供了参考。  相似文献   

9.
设计了一种利用压电叠层的微幅振动的新型压电直线电机。分析了非共振状态下电机的工作机理,设计了电机的定子结构和总体结构。利用有限元软件对驱动足进行仿真分析,得到了柔性结构的最佳尺寸。制作了样机并进行测试,试验表明电机的运行速度随激励频率和激励电压的增加而增加,且在一定阈值内近似成线性关系。当驱动电压峰峰值为100 V、频率为1.6 kHz时,电机的空载速度可达2.8 mm/s,最大推力可达3.5 N。该电机工作频带宽、驱动电压低,对电机的结构精度和加工精度要求不高。  相似文献   

10.
为了提高轮式管道机器人对变径管道的适应能力和在垂直管道时的移动能力,设计了一种液压驱动的轮式管道机器人,机器人变径依靠平行四杆机构实现,变径范围为385mm~405mm;构建了静力学平衡方程,计算得出机器人在垂直管道内不下滑时变径机构需要对管道内壁提供的最小压力207.73N;利用ADAMS对管道机器人的变径机构进行动...  相似文献   

11.
针对内径为15 mm~20 mm的微小管道,设计了3种适应不同管径的常用调节机构。分析了凸轮推杆和丝杠螺母副调节机构的力学特性,并给出了计算结果,比较分析了各自的优缺点。根据实际需要,最终选用了丝杠螺母副调节机构,设计了能适应管径为15 mm~20 mm管道的机器人。利用机械系统动力学仿真软件ADAMS建立了机器人虚拟样机牵引力测试模型,仿真表明:该调节机构具有15 N左右的牵引力输出,且该调节机构的适应管径能力很好地满足设计需要。  相似文献   

12.
为提高支撑式油气管道机器人的变径性能,通过ADAMS对管道机器人的局部变径机构进行参数化建模和优化设计。根据优化后的数据以及管道机器人变径机构的结构特点,在SolidWorks中建立相对完整的变径机构三维模型,将模型导入到ADAMS中进行仿真分析。优化后的螺母水平推力减小了41.5%,通过仿真模拟冲击载荷对管道机器人变径机构的影响,分别得到变径机构在正常变径过程和受到冲击载荷时,螺母水平推力和压缩弹簧的变化情况,为选取合适的电机以及压缩弹簧提供理论依据。  相似文献   

13.
油气管道由于腐蚀、外力等原因会造成管壁变薄,发生穿孔、泄漏和开裂等事故。管道投入运行时间和管道长度不断增加,以及工作环境日趋恶劣,加大了水下油气管道的检测难度。基于SolidWorks软件设计了一款用于检测水下油气管道腐蚀缺陷的机器人,包括管道直行机构和旋转小车,并对关键零部件及控制系统进行了分析设计;通过ANSYSFLUENT软件模拟不同水流速度、不同移动速度下机器人壁面受力情况,分析水流速度、移动速度对机器人前端壁面受力的影响规律,发现:随着水流速度与移动速度不断增大,机器人前端壁面受力不断增大,但当移动速度增大到0.4m/s时,变化不再明显;计算得到最大阻力为170.77N,所选用推进器最大推力为110.74N,因此采用双推进器驱动能够支撑机器人前移,满足设计要求。  相似文献   

14.
为提高企业刹车盘智能生产线的生产效率,设计了上下料工业机器人第七轴——行进轴结构。结构采用斜齿轮齿条机构与直线导轨相结合的传动方式,并在导轨两端设置机械限位结构,防止机器人由于程序出错或电机故障而损坏。利用SolidWorks建模软件对工业机器人行进轴进行方案设计和校核,并结合相关有限元分析理论,利用ANSYS软件对行进轴结构中的关键部件进行静力学仿真,通过仿真结果验证了行进轴结构中关键部件的可靠性。该研究为实际投产提供了技术支持,能够有效缩短产品的制造周期,具有一定的应用前景。  相似文献   

15.
管道机器人适应不同管径的三种调节机构的比较   总被引:10,自引:0,他引:10  
为了使管道机器人能够适应管径为400~650mm的管道,介绍了3种适应不同管径的常用调节机构.分析了每种调节机构的力学特性,给出了计算结果,比较研究了各种调节机构的优缺点.针对工程需要,选用了滚珠丝杠螺母副调节机构,滚珠丝杠上的筒式压力传感器保证驱动轮和管道内壁间的压力始终处于稳定的范围,使管道机器人具有充裕并且稳定的牵引力,牵引力的实验表明该调节机构具有1404N的牵引力输出.该调节机构能很好地适应管径为400~650mm的管道.  相似文献   

16.
针对管径为18-20 mm的细小管道,本文研制了一种新型的蠕动式微小管内机器人,采用三组直流减速电机和螺杆传动装置,通过控制三组电机顺序协调动作,实现机器人的蠕动爬行。该机器人由三个单元组成:前后部分为支撑管壁的爪结构单元,中间部分为蠕动单元,各单元之间用微型十字换向节连接。可搭载无损检测(non-destructive testing,NDT)传感器,能适应Φ18-Φ20 mm的管径,可通过曲率半径不小于80mm的弯管,移动速度为5-8mm/s,具有0-90°爬坡能力,可双向移动,其负载能力不小于1kgf,载重自重比可达6.67:1,机器人本体尺寸为Φ13 mm×190 mm,重约150g,实现了管道机器人的"微小化"和"大驱动力"的需求。  相似文献   

17.
针对老旧的城市排水管道出现的结垢、被腐蚀等复杂的环境,提出了一种基于三轴驱动结构和具有径向柔性调节特性的履带式排水管道清理机器人。介绍了机器人的结构组成和自适应柔性调节机构的工作原理,建立了可调节机构的力学模型,分析了可调机构的力学性能,利用ADAMS参数化建模与优化设计建立了仿真试验模型,以测量的弹簧柔性力的峰值最小为目标函数,使用OPTDES-GRG算法对自适应调节结构进行了优化计算,得到了满足约束条件的最优杆长参数,提高了机器人的变径性能。  相似文献   

18.
驱动电压幅值对双压电薄膜管道微机器人运动的影响   总被引:1,自引:0,他引:1  
研究了一种细小管道内移动微机器人,它可以搭载摄像机进入φ20mm的管道内部进行检测作业.微机器人驱动器采用PZT双压电薄膜驱动器.介绍了微机器人的结构及运动机理.着重介绍了驱动电压幅值对此类微机器人运动的影响,通过建模、仿真以及有限元分析,得到随着驱动电压幅值的增加,驱动器振幅增加,微机器人速度增加的结论,并通过实验验证了此结论,此结论对提高此类微机器人的工作效率有重要意义.  相似文献   

19.
刘帅民  尚唯坚 《机械》2009,36(2):76-78
针对管道内径为Ф100mm的微小型管道检测机器人研究,提出了基于螺旋推进原理的微小型管道机器人的解决方案。新型的旋转体和保持体结构的设计,使此管道机器人具有较大的牵引力和移动速度。机器人采用节段式设计,使得其在体积微小的同时,具有强大的功能扩展性。本文介绍了螺旋推进管道机器人的组成及工作原理,对机器人的机械结构进行了设计,并且分析了其在弯管内的几何与运动约束条件。  相似文献   

20.
提出一种具有良好越障性能的直轮驱动式自适应管道机器人。首先建立机器人越障的动力学模型,并通过分析得出影响机器人越障的主要因素,然后对机器人通过环形障碍物的状态进行仿真分析,最后搭建实验平台,进行实验验证。研究表明:该机器人能够稳定越过障碍,且满足设计要求;管道机器人的质心会一直保持在管道的中心轴线上,而相应的3个驱动部分的质心会呈120°对称分布管道中心轴线周围,机器人最大越障高度为6mm;越障时,机器人的电机转矩随越障高度的增大而增加,但实际电机转矩始终小于电机最大转矩。直轮驱动式自适应管道检测机器人能在内径(160~180)mm左右的管道中爬行,能够越过不高于6 mm的障碍,对管道检测机器人的设计与研究具有重要的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号