首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this work, the alternative refrigerants were evaluated as a drop-in of an R-22-based refrigeration system. The tested system comprises a variable-speed scroll compressor, an electronic expansion valve, a hot-and-cold water circuit and their respective heat exchangers. To make a fair comparison among fluids, only the lubricant type and refrigerant charge were varied to ensure good system functionality. The system performance was evaluated, varying the expansion valve opening to achieve evaporation temperatures of −5 °C, −10 °C and −15 °C. The same methodology was applied for various frequencies using an inverter drive. It was carried out in more than 200 experiments, and the response surface method was used to analyze the results. For all tested conditions, the R-438A was the most flexible alternative among the tested refrigerants as a drop-in of R-22 operating with a scroll compressor since the system operated in a wider range of values. Meanwhile, the R-1270 had the highest cooling capacity value and the lowest TEWI.  相似文献   

2.
The energy and exergy parameters of R417A and R424A gases which can be used instead of R22 were experimentally investigated for a split-type air conditioner. Although GWP amounts of the available alternative refrigerants are higher compared to R22, their ODP values are zero. The experiments were accomplished for three different ambient temperature values of 25 °C, 30 °C and 35 °C. The covered test conditions were carried out for steady-state case while keeping the inside medium temperature at constant temperature of 22 °C. The cooling capacity, COP, exergy destruction of components in the unit (i.e., compressor, condenser, evaporator, and expansion device), exergetic efficiency and some other parameters of the system were determined. COP values for the refrigerants of R417A and R424A were noted to be smaller compared to R22. Similarly, both isentropic efficiency of the compressor and exergetic efficiency of the system were higher for R22. The use of R424A will be more suitable rather than R417A since COP values of R417A are lower about 5–16% compared to R424A. The COP value of R22 is greater than that of R417A and R424A by amounts of 17–23% and 4–18%, respectively. At the greater evaporation temperatures (0 °C to +5 °C as in the air-conditioners) it can be stated that R424A is more preferable than R417A as an alternative refrigerant to R22.  相似文献   

3.
An experimental study of a fin and tube condenser was performed using two different configurations of condenser paths (U and Z type) and two kinds of refrigerants (R-22 and R-407C) as working fluids. An integral test facility was constructed to evaluate the heat transfer capacity of the air and refrigerant sides of the condenser. An uncertainty study was also performed. A numerical code was developed, using a section-by-section analysis scheme in which mal-distribution on the air side and temperature gliding on the refrigerant side could be considered along the tube-length direction. Different condenser capacities were obtained from both the experimental and numerical results, depending on the paths and refrigerants used. R-22 performed better than R-407C for the Z-type path configuration, but no significant difference was found between results using either refrigerant in the U-type path configuration. On average, the numerical results obtained with R-22 were 10.1% greater than experiment data; using R-407C, results were 10.7% less than experiment data. The numerical code can be used as a design tool to develop better condenser paths.  相似文献   

4.
Evaporative condenser is an energy efficient and environmentally friendly air conditioning equipment. This paper proposed an air conditioning system using dual independent evaporative condenser and investigated the cooling performance. Many factors, such as evaporator water inlet temperature, compressor frequency, air dry-bulb temperature, air velocity and water spray rate, which influenced the cooling performances of air conditioning system with evaporative condenser have been investigated. The results indicated that cooling capacity and coefficient of performance (COP) increased significantly with the increasing of evaporator water inlet temperature (12–25 °C), the air velocity (2.05–3.97 m s−1) and the water spray rate (0.03–0.05 kg m−1 s). However, COP decreased with the increasing ambient air dry-bulb temperature (31.2–35.1 °C) and the compressor frequency (50–90 Hz). Furthermore, the heat transfer coefficient (K0) was 232–409 W m−2 K−1 in different air velocity and water spray rate.  相似文献   

5.
The prototype of an air-cooled double-lift NH3–H2O absorption chiller driven by hot water at low temperature is presented. The main objective of the study is to illustrate the experimental performances of the prototype under different operating conditions. A mathematical model of the cycle is developed, along with a procedure for the identification of otherwise difficult to measure data, with the purpose of providing the complete picture of the internal thermodynamic cycle. The combined experimental and numerical data allowed assessing the effects on the thermodynamic cycle with varying operating conditions. The unit operated steadily with chilled water inlet 12 °C, outlet 7 °C, air temperature between 22 °C and 38 °C, and hot water driving temperatures between 80 °C and 90 °C. The reference cooling capacity at air temperature of 30 °C is 2.5 kW, with thermal COP about 0.3 and electrical COP about 10.  相似文献   

6.
An experimental apparatus for assessing the thermal stability threshold of refrigerant working fluids is described and results for R-134a (1,1,1,2-tetrafluoroethane), R141b (1,1-dichloro-1-fluoroethane), R-13I1 (trifluoromethyl iodide), R-7146 (sulphur hexafluoride), R-125 (pentafluoroethane) are presented. The information is a concern for the design of refrigeration systems, high temperature heat pumps and Organic Rankine Cycles (ORC), for which the above refrigerants are proposed. The method aims to identify a maximum temperature for plant operation in contact with stainless steel and involves the evaluation of four indicators: (1) pressure variation while the fluid is maintained at set temperature; (2) saturation pressure comparison after heat treatment; (3) chemical analysis; and (4) vessel visual inspection after the test session. The highest temperatures at which no evident degradation occured are: 368°C for R-134a; 102°C for R-13I1; 90°C for R-141b; 204°C for R-7146; and 396°C for R-125.  相似文献   

7.
R404A is going to be phased out from most of the commercial refrigeration systems due to its high GWP value of 3943. R449A (GWP of 1282) has been proposed to replace R404A with only minor system modifications in supermarkets. This paper presents the measurements of a light retrofit replacement of R404A using R449A in a medium temperature indirect refrigeration system (secondary fluid temperature at the evaporator outlet between −9 and −4 °C). It has been demonstrated that with a slight expansion device adjustment and 4% increase of refrigerant charge, R449A can be used in this refrigeration system designed for R404A because of its suitable thermodynamic properties and acceptable maximum discharge temperature. At a secondary fluid temperature at condenser inlet of 30 °C, the COP of R449A nearly matches that of R404A (both were between 1.9 and 2.2), despite having approximately 13% lower cooling capacity. As a conclusion, attending to the GWP reduction and similar energy performance, it was demonstrated using the TEWI methodology that the use of the recently developed refrigerant R449A in these applications can reduce the total CO2 equivalent emissions of an indirect supermarket refrigeration system designed for R404A refrigerant.  相似文献   

8.
An experimental investigation of the performance of a commercially available vapor absorption refrigeration (VAR) system is described. The natural gas-fired VAR system uses aqua-ammonia solution with ammonia as the refrigerant and water as the absorbent and has a rated cooling capacity of 10 kW. The unit was extensively modified to allow fluid pressures and temperatures to be measured at strategic points in the system. The mass flow rates of refrigerant, weak solution, and strong solution were also measured. The system as supplied incorporates air-cooled condenser and absorber units. Water-cooled absorber and condenser units were fitted to extend the VAR unit's range of operating conditions by varying the cooling water inlet temperature and/or flow rates to these units. The response of the refrigeration system to variations in chilled water inlet temperature, chilled water level in the evaporator drum, chilled water flow rate, and variable heat input are presented.  相似文献   

9.
Development of correlations predicting critical mass flow rate and critical pressure distribution through capillary tubes is presented. In order to accomplish such a work, the critical mass flow rate and pressure distribution for nearly 500 operational conditions for R-12, R-22, and R-134a are evaluated. Operational conditions include inlet pressure varying from 800 to 1500 kPa, inlet subcold temperature between 0 and 10 °C, length varying from 1 to 2 m, and inner diameter between 0.5 and 1.5 mm. By performing non-dimensional analysis on numerical data, general correlations are presented to predict the critical mass flow rate through capillary tubes. In addition, by utilizing numerical data for down-stream pressure, non-dimensional analysis is performed to present correlations to predict critical down-stream pressure and pressure distribution through capillary tubes.  相似文献   

10.
This work presents the experimental evaluation of R-513A (GWP = 573) and R-450A (GWP = 547) as R-134a (GWP = 1301) drop-in replacements and as R-507A (GWP = 3987) retrofits in a commercial direct expansion refrigeration system for medium temperature applications (2 °C). The evaluation covered 24-hour tests using a single-stage cycle with semi-hermetic compressor, an electronic expansion valve customized for each refrigerant and a commercial vertical cabinet with doors placed inside a climatic chamber. The tests were performed at three water dissipation temperatures (23.3, 32.8 and 43.6 °C). Experimental results indicate that R-513A and R-450A can operate with R-134a plants, with increments in energy consumption between −1.6 to +1.2% for R-513A and from +1.3 to +6.8% for R-450A, whereas in comparison with R-507A, R-513A offered reductions in energy consumption between 4.4 to 8.2% and R-450A between 0 to 3.3%. The paper analyzes the modification of the operating pressures/temperatures and the energy indicators using the four refrigerants.  相似文献   

11.
Thermal heat driven adsorption systems have been gained considerable attention on the recent energy utilization trend. However, the drawbacks of these adsorption systems are their poor performance. It is urgently necessary to improve the system performance of the adsorption cycles. There are two major ways for the system performance improvement. One is to develop new adsorbent material well suited to low temperature heat regeneration. The other is to enhance heat and mass transfer in the adsorber/desorber heat exchanger. The objective of the paper is to investigate the system performance of an adsorption cycle. The cycle utilizes activated carbon fiber (ACF)/methanol as adsorbent/refrigerant pair. In this paper, specific cooling effect SCE and COP of the system are numerically evaluated from the adsorption equilibrium theory with different hot, cooling and chilled fluid inlet temperatures. It is confirmed that the influences of hot, cooling and chilled fluid inlet temperatures on the system performance are qualitatively similar to those of silica gel/water pair. Even though, the driving temperature levels of ACF/methanol and silica gel/water are different. There is an optimum condition for COP to reach at maximum for ACF/methanol pair. Particularly, the ACF/methanol system shows better performance with lower chilled fluid inlet temperature between −20 and 20 °C.  相似文献   

12.
This paper presents the design and construction of a prototype steam ejector refrigeration system which can be operated under the actual condition of Thai environment, which is rather hot and humid. The prototype refrigerator was designed to produce a cooling capacity of approximately 3 kW. Water was selected to be used as the working fluid. The steam boiler used was a vertical fire tube type and it was designed to be used with LPG compact gas burner. The condenser was cooled by water obtained from a conventional cooling tower. The prototype refrigerator was used to produce chilled water which was used to cool a small tested room. It was observed that the room temperature of 24.2 °C was obtained at the cooling load of 3000 W. The cooling water was supplied to the condenser at about 30 °C. The COP obtained was 0.45. This prototype refrigerator is proven to be practical and can be used in actual environment of Thailand.  相似文献   

13.
This paper studies the influence of working fluids over the performance of heat driven ejector refrigeration systems performance by using a lumped parameter model. The model used has been selected after a comparison of different models with a set of experimental data available in the literature. The effect of generator, evaporator and condenser temperature over the entrainment ratio and the COP has been investigated for different working fluids in the typical operating conditions of low grade energy sources. The results show a growth in performance (the entrainment ratio and the COP) with a rise in the generator and evaporator temperature and a decrease in the condenser temperature. The working fluids have a great impact on the ejector performance and each refrigerant has its own range of operating conditions. R134a is found to be suitable for low generator temperature (70–100 °C), whereas the hydrocarbons R600 is suitable for medium generator temperatures (100–130 °C) and R601 for high generator temperatures (130–180 °C).  相似文献   

14.
This paper presents a study of flow regimes, pressure drops, and heat transfer coefficients during refrigerant condensation inside a smooth, an 18° helical micro-fin, and a herringbone tubes. Experimental work was conducted for condensing refrigerants R-22, R-407C, and R-134a at an average saturation temperature of 40 °C with mass fluxes ranging from 400 to 800 kg m−2 s−1, and with vapour qualities ranging from 0.85 to 0.95 at condenser inlet and from 0.05 to 0.15 at condenser outlet. These test conditions represent annular and intermittent (slug and plug) flow conditions. Results showed that transition from annular flow to intermittent flow, on average for the three refrigerants, occurred at a vapour quality of 0.49 for the smooth tube, 0.29 for the helical micro-fin tube, and 0.26 for the herringbone tube. These transition vapour qualities were also reflected in the pressure gradients, with the herringbone tube having the highest pressure gradient. The pressure gradients encountered in the herringbone tube were about 79% higher than that of the smooth tube and about 27% higher than that of the helical micro-fin tube. A widely used pressure drop correlation for condensation in helical micro-fin tubes was modified for the case of the herringbone tube. The modified correlation predicted the data within a 1% error with an absolute deviation of 7%. Heat transfer enhancement factors for the herringbone tube against the smooth tube were on average 70% higher while against the helical micro-fin tube it was 40% higher. A correlation for predicting heat transfer coefficients inside a helical micro-fin tube was modified for the herringbone tube. On average the correlation predicted the data to within 4% with an average standard deviation of 8%.  相似文献   

15.
Pseudo-pure fluid equations of state explicit in Helmholtz energy have been developed to permit rapid calculation of the thermodynamic properties of the refrigerant blends R-410A, R-404A, R-507A, and R-407C. The equations were fitted to values calculated from a mixture model developed in previous work for mixtures of R-32, R-125, R-134a, and R-143a. The equations may be used to calculate the single-phase thermodynamic properties of the blends; dew and bubble point properties are calculated with the aid of additional ancillary equations for the saturation pressures. Differences between calculations from the pseudo-pure fluid equations and the full mixture model are on average 0.01%, with all calculations less than 0.1% in density except in the critical region. For the heat capacity and speed of sound, differences are on average 0.1% with maximum differences of 0.5%. Generally, these differences are consistent with the accuracy of available experimental data for the mixtures, and comparisons are given to selected experimental values to verify accuracy estimates. The equations are valid from 200 to 450 K and can be extrapolated to higher temperatures. Computations from the new equations are up to 100 times faster for phase equilibria at a given temperature and 5 times faster for single-phase state points given input conditions of temperature and pressure.  相似文献   

16.
This paper presents the experimental results obtained from a new heat pump prototype for sanitary hot water production, in the application of heat recovery from water sources like sewage water or condensation loops (typical temperature condition between 10 °C and 30 °C). The system configuration is able to produce a high degree of subcooling in order to take advantage from the high water temperature glide (typical value for sanitary hot water production is 10 °C to 60 °C). Subcooling is made by using a separate heat exchanger from the condenser (subcooler). The obtained results have shown a high degree of improvement by making subcooling. COP is 5.61 in nominal conditions, which is about 31% higher than the same cycle working without subcooling (Nominal point: inlet/outlet water temperature at evaporator is 20 °C/15 °C and the water inlet/outlet temperature in the heat sink is 10 °C and 60 °C).  相似文献   

17.
Simulation analyses for a vapour compression heat pump cycle using nonazeotropic refrigerant mixtures (NARMs) of R22 and R114 are conducted under the condition that the heat pump thermal output and the flow rate and inlet temperatures of the heat sink and source water are given. The heat transfer coefficients of the condensation and evaporation are calculated with empirical correlations proposed by the authors. The validity of the evaluation method and the correlations is demonstrated by comparison with experimental data. The relations between the coefficient of performance (COP) and composition are shown under two conditions: (1) the constant heat transfer length of the condenser and evaporator; and (2) the constant temperature of refrigerant at the heat exchanger inlet. The COP of the NARMs is higher than that of pure refrigerant when the heat transfer lengths of the condenser and evaporator are sufficiently long.  相似文献   

18.
A mixture model explicit in Helmholtz energy has been developed that is capable of predicting thermodynamic properties of refrigerant mixtures containing R-32, R-125, R-134a, and R-152a. The Helmholtz energy of the mixture is the sum of the ideal gas contribution, the compressibility (or real gas) contribution, and the contribution from mixing. The contribution from mixing is given by a single equation that is applied to all mixtures used in this work. The independent variables are the density, temperature, and composition. The model may be used to calculate thermodynamic properties of mixtures, including dew and bubble point properties and critical points, generally within the experimental uncertainties of the available measured properties. It incorporates the most accurate published equation of state for each pure fluid. The estimated uncertainties of calculated properties are ±0.25% in density, ±0.5% in the speed of sound, and ±1% in heat capacities. Calculated bubble point pressures are generally accurate to within ±1%.  相似文献   

19.
In this study, a vapor injection technique was applied in a high temperature heat pump (HTHP) for providing hot water at temperatures up to 88 °C. A prototype HTHP system with economizer vapor injection was developed and its performance was experimentally investigated under various operating conditions. Results showed that the vapor injection pressure had a large effect on heating capacity and on refrigerant temperature at the inlet of the electronic expansion valve (EEV). As the injection pressure increased from 0.82 to 0.98 MPa, the vapor injection flow ratio increased from 7.3% to 22.61% and the heating capacity increased by 7%. The system COP did not show significant change although the COP trend showed an optimal value for the injection pressure. The refrigerant temperature at the EEV inlet showed a subcooling of more than 16 °C under all studied conditions, which improved the EEV operating reliability.  相似文献   

20.
Surface Tension of HFC Refrigerant Mixtures   总被引:1,自引:0,他引:1  
The surface tension of refrigerant mixtures, i.e., R-410A (50 mass% R-32/50 mass% R-125), R-410B (45 mass% R-32/55 mass% R-125), R-407C (23 mass% R-32/25 mass% R-125/52 mass% R-134a), R-404A (44 mass% R-125/52 mass% R-143a/4 mass% R-134a), and R-507 (50 mass% R-125/50 mass% R-143a), has been measured and correlated in the present study. Although the first three mixtures are very important as promising replacements for R-22 in air-conditioners and heat-pumps and the last two are promising replacements for R-502, surface tension data for these mixtures were not previously available. The measurements were conducted under conditions of coexistence of the sample liquid and its saturated vapor in equilibrium. The differential capillary rise method (DCRM) was used, with two glass capillaries with inner radii of 0.3034±0.0002 and 0.5717±0.0002 mm. The temperature range covered was from 273 to 323 K, and the uncertainty of measurements for surface tensions and temperatures is estimated to be at most ±0.2 mN·m–1 and ±20 mK, respectively. A mixing rule was selected for representing the temperature dependence of the resultant data. These data were successfully represented by a mixing rule using mass fraction based on the van der Waals correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号