首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative permittivity (dielectric constant) of mixtures of a polyol ester (POE) ISO VG 10 lubricating oil and refrigerants R-134a and R-1234yf was evaluated experimentally for temperatures ranging from 298 to 328 K. The experimental apparatus was designed and built specifically for determining the dielectric properties of mixtures of lubricants and liquified gases (refrigerants) at high pressures. The mixture relative permittivity was inversely proportional to the temperature and directly proportional to the refrigerant concentration. The relative permittivity of the R-1234yf mixture was slightly lower than that of the R-134a mixture at identical conditions. The Böttcher mixing rule for the relative permittivity and the Oster rule for the mixture polarity showed the best agreement with the experimental data, with root-mean square (RMS) deviations smaller than 1%.  相似文献   

2.
A mixture model explicit in Helmholtz energy has been developed that is capable of predicting thermodynamic properties of refrigerant mixtures containing R-32, R-125, R-134a, and R-152a. The Helmholtz energy of the mixture is the sum of the ideal gas contribution, the compressibility (or real gas) contribution, and the contribution from mixing. The contribution from mixing is given by a single equation that is applied to all mixtures used in this work. The independent variables are the density, temperature, and composition. The model may be used to calculate thermodynamic properties of mixtures, including dew and bubble point properties and critical points, generally within the experimental uncertainties of the available measured properties. It incorporates the most accurate published equation of state for each pure fluid. The estimated uncertainties of calculated properties are ±0.25% in density, ±0.5% in the speed of sound, and ±1% in heat capacities. Calculated bubble point pressures are generally accurate to within ±1%.  相似文献   

3.
An 18-coefficient modified Benedict–Webb–Rubin equation of state has been developed for R-404A, a ternary mixture of 44% by mass of pentafluoroethane (R-125), 52% by mass of 1,1,1-trifluoroethane (R-143a), and 4% by mass of 1,1,1,2-tetrafluoroethane (R-134a). Correlations of bubble point pressures, dew point pressures, saturated liquid densities, and saturated vapor densities are also presented. This equation of state has been developed based on the reported experimental data of PVT properties, saturation properties, and isochoric heat capacities by using least-squares fitting. These correlations are valid in the temperature range from 250 K to the critical temperature. This equation of state is valid at pressures up to 19 MPa, densities to 1300 kg·m–3, and temperatures from 250 to 400 K. The thermodynamic properties except for the saturation pressures are calculated from this equation of state.  相似文献   

4.
Pseudo-pure fluid equations of state explicit in Helmholtz energy have been developed to permit rapid calculation of the thermodynamic properties of the refrigerant blends R-410A, R-404A, R-507A, and R-407C. The equations were fitted to values calculated from a mixture model developed in previous work for mixtures of R-32, R-125, R-134a, and R-143a. The equations may be used to calculate the single-phase thermodynamic properties of the blends; dew and bubble point properties are calculated with the aid of additional ancillary equations for the saturation pressures. Differences between calculations from the pseudo-pure fluid equations and the full mixture model are on average 0.01%, with all calculations less than 0.1% in density except in the critical region. For the heat capacity and speed of sound, differences are on average 0.1% with maximum differences of 0.5%. Generally, these differences are consistent with the accuracy of available experimental data for the mixtures, and comparisons are given to selected experimental values to verify accuracy estimates. The equations are valid from 200 to 450 K and can be extrapolated to higher temperatures. Computations from the new equations are up to 100 times faster for phase equilibria at a given temperature and 5 times faster for single-phase state points given input conditions of temperature and pressure.  相似文献   

5.
The vapor–liquid equilibrium of the mixture composed of difluoromethane (R-32) and propane (R-290) was studied in the temperature range between 273.15 and 313.15 K. The experimental uncertainties of temperature, pressure, and composition measurements were estimated to be within ±10 mK, ±3 kPa, and ±0.4mol%, respectively. Comparisons between the present data and available experimental data were made using the Helmholtz free energy mixture model (HMM) adopted in the thermophysical properties program package, REFPROP 6.0, as a baseline. In addition, the existence of an azeotrope and the determination of new adjustable parameters for HMM for the R-32 + R-290 mixture are discussed.  相似文献   

6.
At present hydrofluorocarbons (HFCs) such as R32, R-125, R-134a, and R-143a are widely used, and it is required to obtain accurate information of thermophysical properties, especially of the thermal conductivity of HFCs. In this paper new thermal conductivity equations for R-32, R-125, R134a, and R143a are proposed, applicable over a wide range of temperature and pressure including the critical region based on existing experimental data, and the reliability of the present equations is summarized. The problem that the thermal conductivity calculated from the thermal diffusivity in the critical region differs depending on the equation of state is also discussed. Paper presented at the Sixteenth European Conference for Thermophysical Properties, September 1–4, 2002, London, United Kingdom.  相似文献   

7.
Bubble-point pressures and saturated- and compressed-liquid densities of the binary R-125 (pentafluoroethane) + R-143a (1,1,1 -trifluoroethane) system have been measured for several compositions at temperatures from 280 to 330 K by means of a magnetic densimeter coupled with a variable-volume cell mounted with a metallic bellows. The experimental uncertainties of the temperature, pressure, density, and composition were estimated to be within ±10mK, ± 12 kPa, ±0.2%, and ±0.2mass%, respectively. The purities of the samples used throughout the measurements are 99.96 area% for R-125 and 99.94 area% for R-143a. Based on these measurements, the thermodynamic behavior of the vapor-liquid equilibria of this binary refrigerant mixture has been represented using the Peng–Robinson equation for the bubble-point pressures, a correlation for the saturated-liquid densities, and an equation of state for the compressed-liquid densities.  相似文献   

8.
The plane of vapor–liquid criticality for ternary refrigerant mixtures of difluoromethane (R-32)+pentafluoroethane (R-125)+1,1,1,2-tetrafluoroethane (R-134a) was determined from data on the vapor–liquid coexistence curve near the mixture critical points. The compositions (mass percentage) of the mixtures studied were 23% R-32+25% R-125+52% R-134a (R-407C), 25% R-32+15% R-125+60% R-134a (R-407E), and 20% R-32+40% R-125+40% R-134a (R-407A). The critical temperature of each mixture was determined by observation of the disappearance of the meniscus. The critical density of each mixture was determined on the basis of meniscus disappearance level and the intensity of the critical opalescence. The uncertainties of the temperature, density, and composition measurements are estimated as ±10 mK, ±5 kg·m–3, and ±0.05%, respectively. In addition, predictive methods for the critical parameters of R-32/125/134a mixtures are discussed.  相似文献   

9.
Estimates are provided for R-1234ze(Z) of its: (1) critical temperature, pressure, and density, acentric factor, and ideal gas specific heat at constant pressure, and (2) various thermodynamic and transport properties, which are used to predict the performance potential of R-1234ze(Z) in high-temperature heat pumping applications. In particular, for an idealized cycle, the coefficient of performance and volumetric heating capacity for R-114 are 3.24 and 1667 kW m−3, respectively, and for R-1234ze(Z) are 3.40 and 1645 kW m−3, respectively. The attractiveness of R-1234ze(Z) is confirmed further through heat exchanger simulations. This paper demonstrates that R-1234ze(Z) deserves further consideration as a possible R-114 replacement.  相似文献   

10.
The vapor viscosities of the new refrigerant R1234yf and its binary mixtures, R32+R1234yf, R125+R1234yf, were measured at atmospheric pressure with a falling-ball-type viscometer. The combined expanded uncertainty of the measurement apparatus was less than 1.5%. The binary mixtures consisted of 20.0, 30.0, 40.0, and 50.0 wt% R32 for R32+R1234yf and of 20.0, 35.0, 50.0, and 70.0 wt% R125 for R125+R1234yf. The viscosities of R1234yf were correlated with the Chapman–Enskog gas kinetic theory and those of binary mixtures were correlated with the Wilke mixture rule. The average absolute deviation (AAD) is 0.189% for R32+R1234yf and 1.169% for R125+R1234yf. The deviations of experimental viscosities of the binary mixtures from data calculated using RefProp v9.1 were also obtained. The AAD is 0.555% for R32+R1234yf and 1.479% for R125+R1234yf.  相似文献   

11.
An experimental apparatus for assessing the thermal stability threshold of refrigerant working fluids is described and results for R-134a (1,1,1,2-tetrafluoroethane), R141b (1,1-dichloro-1-fluoroethane), R-13I1 (trifluoromethyl iodide), R-7146 (sulphur hexafluoride), R-125 (pentafluoroethane) are presented. The information is a concern for the design of refrigeration systems, high temperature heat pumps and Organic Rankine Cycles (ORC), for which the above refrigerants are proposed. The method aims to identify a maximum temperature for plant operation in contact with stainless steel and involves the evaluation of four indicators: (1) pressure variation while the fluid is maintained at set temperature; (2) saturation pressure comparison after heat treatment; (3) chemical analysis; and (4) vessel visual inspection after the test session. The highest temperatures at which no evident degradation occured are: 368°C for R-134a; 102°C for R-13I1; 90°C for R-141b; 204°C for R-7146; and 396°C for R-125.  相似文献   

12.
R-32/125 (difluoromethane/pentafluoroethane) and R-125/143a (pentafluoro-ethane/l,l,l-trifluoroethane) binary systems are promising alternative refrigerants to replace conventional refrigerants, i.e., R-22 and R-502. The saturated vapor- and liquid-density data in the critical region of these mixtures were measured using the visual observation of the meniscus disappearance in an optical cell. For the R-32/125 system, 35 saturation density data were measured at three compositions, 10, 35, and 50 mass% R-32. Nineteen saturation density data were also measured for R-125/143a (50/50 mass%). The critical temperatures and densities for these binary refrigerants were determined by taking into consideration the level and location of the meniscus disappearance as well as the intensity of the critical opalescence. Correlations to represent the critical loci of these binary refrigerants for an entire range of compositions have been developed. The experimental uncertainties of the saturation density data are estimated to be within 9 mK in temperature and 0.5 to 5.0 kg · m–3 in density. The uncertainties of the critical temperature and density are estimated to be within 12 to 14mK and 4 to 8kg · m–3, respectively.  相似文献   

13.
Development of correlations predicting critical mass flow rate and critical pressure distribution through capillary tubes is presented. In order to accomplish such a work, the critical mass flow rate and pressure distribution for nearly 500 operational conditions for R-12, R-22, and R-134a are evaluated. Operational conditions include inlet pressure varying from 800 to 1500 kPa, inlet subcold temperature between 0 and 10 °C, length varying from 1 to 2 m, and inner diameter between 0.5 and 1.5 mm. By performing non-dimensional analysis on numerical data, general correlations are presented to predict the critical mass flow rate through capillary tubes. In addition, by utilizing numerical data for down-stream pressure, non-dimensional analysis is performed to present correlations to predict critical down-stream pressure and pressure distribution through capillary tubes.  相似文献   

14.
An assessment of thermodynamic models for HFC refrigerant mixtures based on Helmholtz energy equations of state was made through critical-point calculations for ternary and quaternary mixtures. The calculations were performed using critical-point criteria expressed in terms of the Helmholtz free energy. For three ternary mixtures: difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a), R-125 + R-134a + 1,1,1-trifluoroethane (R-143a), and carbon dioxide (CO2) + R-32 + R-134a, and one quaternary mixture, R-32 + R-125 + R-134a + R-143a, calculated critical points were compared with experimental values, and the capability of the mixture models for representing the critical behavior was discussed.  相似文献   

15.
The present work aims to evaluate the performance characteristics of a vapor compression refrigeration system using R-438A as a retrofit refrigerant for R-22. In order to achieve this objective, a test facility is developed and experiments are performed over a wide range of chilled water inlet temperature (11:20 °C), condenser water inlet temperature (25:35 °C) and condenser water mass flow rate (363:543 kg h−1). Results showed that as the chilled water inlet temperature changes from 11.5 to 20.5 °C, system COP increases from 1.78 to 2.07 at constant condenser water inlet temperature of 25.5 °C. Cooling capacity and COP of the system using R-438A are lower than R-22 by 11% and 12.5%, respectively. However, compressor discharge temperature using R-438A is slightly lower than R-22 which confirms that R-438A can be used as a retrofit refrigerant for R-22 to complete the remaining life time of the existing plants.  相似文献   

16.
Two kinds of equilibrium measurements of binary R-32/134a mixtures were carried out. The vapor-liquid equilibria were measured by the static method in the temperature range between 283 and 313 K. On the basis of the present experimental data, the temperature dependence of the binary interaction parameterk 12 for two equations of state, namely, the Soave-Redlich-Kwong equation and Carnahan-Starling-De Santis equation, was discussed. The vapor-liquid coexistence curve near the critical point was also measured by the observation of meniscus disappearance. The critical temperatures and critical densities of 30 and 70 wt% R-32 mixtures were determined on the basis of the saturation densities along the coexistence curve in the critical region. In addition, a correlation of the critical locus for this mixture is proposed as a function of composition.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado, U.S.A.  相似文献   

17.
In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. The flat tubes have two internal geometries; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor quality (0.1–0.9), mass flux (200–600 kg/m2s) and heat flux (5–15 kW/m2). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number of R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the trend is reversed. Possible reasoning is provided considering physical properties of the refrigerants. For the smooth tube, Webb's correlation predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data. The modified model adequately predicts the data.  相似文献   

18.
The experimental PVTx properties of a binary refrigerant mixture, R-125 (pentafluoroethane)+R-143a (1,1,1-trifluoroethane), have been measured for a composition of 50 mass% R-125 by a constant-mass method coupled with an expansion procedure in a range of temperatures from 305 to 400 K, pressures from 1.5 to 6.1 MPa, and densities from 92 to 300 kg·m–3. The experimental uncertainties of the present measurements are estimated to be within ±7.2 mK in temperature, ±3.0 kPa in pressure, ±0.12 kg·m–3 in density, and ±0.040 mass% in composition. The sample purities are 99.953 mass% for R-125 and 99.998% for R-143a. Seven saturated vapor densities and dew point pressures of the R-125+R-143a system were determined, on the basis of rather detailed PVTx properties measured in the vicinity of the saturation boundary as well as the thermodynamic behavior of isochores near saturation. The second and third virial coefficients for temperatures from 330 to 400 K were also determined.  相似文献   

19.
A Generalized Model for the Thermodynamic Properties of Mixtures   总被引:5,自引:0,他引:5  
A mixture model explicit in Helmholtz energy has been developed which is capable of predicting thermodynamic properties of mixtures containing nitrogen, argon, oxygen, carbon dioxide, methane, ethane, propane, n-butane, i-butane, R-32, R-125, R-134a, and R-152a within the estimated accuracy of available experimental data. The Helmholtz energy of the mixture is the sum of the ideal gas contribution, the compressibility (or real gas) contribution, and the contribution from mixing. The contribution from mixing is given by a single generalized equation which is applied to all mixtures studied in this work. The independent variables are the density, temperature, and composition. The model may be used to calculate the thermodynamic properties of mixtures at various compositions including dew and bubble point properties and critical points. It incorporates accurate published equations of state for each pure fluid. The estimated accuracy of calculated properties is ±0.2% in density, ±0.1 % in the speed of sound at pressures below 10 MPa, ±0.5% in the speed of sound for pressures above 10 MPa, and ±1% in heat capacities. In the region from 250 to 350 K at pressures up to 30 MPa, calculated densities are within ±0.1 % for most gaseous phase mixtures. For binary mixtures where the critical point temperatures of the pure fluid constituents are within 100 K of each other, calculated bubble point pressures are generally accurate to within ±1 to 2%. For mixtures with critical points further apart, calculated bubble point pressures are generally accurate to within ±5 to 10%.  相似文献   

20.
Convective boiling heat transfer experiments were performed in horizontal minichannels with binary mixture refrigerant, R-410A. The test section is made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively, and is uniformly heated by applying electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 10–30 kW m−2, a mass flux range of 300–600 kg m−2 s−1, and quality ranges of up to 1.0. The experimental results were mapped on Wang et al.'s (C.C. Wang, C.S. Chiang, D.C. Lu, Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube, Experimental, Thermal and Fluid Science 15 (1997) 395–405) and Wojtan et al.'s (L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I – a new diabatic two-phase flow pattern map, International Journal of Heat and Mass Transfer 48 (2005) 2955–2969) flow pattern maps to observe the flow regimes. Laminar flow appears in flow with minichannels. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A was developed with 11.20% mean deviation; it showed a good agreement between the measured data and the calculated heat transfer coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号