首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用氨气等离子体对芳纶表面进行改性,用X-射线光电子能谱、场发射扫描电子显微镜、力学性能测试等手段对改性前后纤维表面的元素组成、形貌及其拉伸强度进行表征,并进一步通过微脱黏方法分析了等离子体处理条件对芳纶/环氧树脂复合材料界面黏结强度的影响。结果表明:芳纶经表面改性后,其表面极性官能团、表面粗糙度均有所增加,同时与环氧树脂基体的界面黏结强度明显增加。  相似文献   

2.
为改进芳纶Ⅲ增强树脂复合材料的层间剪切性能,采用1,6-己二异氰酸酯(HDI)对芳纶Ⅲ进行表面接枝改性处理;通过正交实验方法讨论了不同处理条件对芳纶Ⅲ复合材料层间剪切强度的影响;并对改性前后纤维的表面结构形貌及浸润性能进行表征。结果表明:最佳的接枝改性条件为HDI与催化剂质量比100∶1,反应时间24 h,反应温度20℃;芳纶Ⅲ经表面接枝处理后,纤维表面出现凸棱与凹槽,且接枝了活泼的—NH2基团,纤维与环氧树脂的接触角由处理前的73.6°减小至45.2°,芳纶Ⅲ对树脂的浸润性提高,从而提高其复合材料的层间剪切强度。  相似文献   

3.
以氨气为反应气体,对芳纶Ⅲ进行等离子体表面改性处理,研究了等离子体处理时间和处理功率对纤维表面性能的影响;采用X射线光电子能谱、场发射扫描电镜、接触角和微脱粘实验等测试方法对改性前后纤维表面元素组成、形貌、润湿能力以及界面粘结强度进行表征。结果表明:芳纶Ⅲ经过氨气等离子体改性后,表面含氮极性基团的含量增加,粗糙程度增大,润湿能力得到明显的改善;当氨气等离子体处理时间为15 min,功率为100 W时,芳纶Ⅲ与环氧树脂的界面粘结强度从处理前的12.9 MPa提高到18.2 MPa,与水的接触角由处理前的71.4°下降到46.8°。  相似文献   

4.
低温等离子体处理对芳纶/环氧界面性能的影响   总被引:6,自引:0,他引:6  
在采用低温等离子体对芳纶纤维进行表面处理后,用扫描电镜观察处理前后的纤维表面,测试了纤维的拉伸性能,并用单纤维抽拔法对芳纶纤维/环氧树脂的界面性能做了定量的表征。实验结果表明:经低温等离子体处理后,芳纶纤维表面变得粗糙,拉伸强度随处理时间延长而下降,纤维初始模量和断裂伸长率略有下降,而芳纶/环氧界面的粘结强度有所提高。  相似文献   

5.
为了改善芳纶纤维复合材料的界面粘结性能,合成了一种新型树脂(AFR)作为基体,以未经任何表面处理的芳纶纤维作增强材料,制备了芳纶纤维/AFR复合材料。采用测定表面能、接触角、层间剪切强度、横向拉伸性能和扫描电镜观察形貌等方法,从宏观和微观等方面研究了芳纶纤维/AFR复合材料的界面粘结性能。结果表明,AFR树脂与芳纶纤维有相近的表面能,AFR树脂溶液与芳纶纤维的接触角为42.8°,而环氧树脂(EP)与芳纶纤维的接触角为68°,说明AFR树脂对芳纶纤维的润湿性优于EP树脂;芳纶/AFR复合材料的层间剪切强度、横向拉伸强度和纵向拉伸强度分别为74.64MPa、25.34MPa和2256MPa,比芳纶/EP复合材料的相应强度分别提高了28.7%、32.5%和13.4%,其复合材料破坏面的形貌也说明芳纶纤维与AFR树脂之间的界面粘结性能较好。  相似文献   

6.
采用等离子体接枝对芳纶纤维表面进行改性处理,采用XPS、浸润性、界面剪切强度对等离子体接枝处理前后的表面组成、复合材料界面粘接性能等进行了研究,结果表明:等离子体接枝处理可以有效地提高芳纶纤维表面的极性官能团,增加与基体树脂-环氧树脂的浸润性,进而提高芳纶/环氧复合材料的界面粘接强度.  相似文献   

7.
对芳纶1414进行低温等离子体表面改性以改善其构成复合材料时的界面黏结性能。设计正交试验,得到低温等离子体处理芳纶1414的最佳条件为放电功率100 W,处理时间300 s,放电压强20 Pa。采用电子单纤维强力机、纤维摩擦因数测定仪、纤维接触角测量仪、扫描电子显微镜和傅里叶变换红外光谱仪对改性前后的芳纶1414进行性能表征。结果表明:经过低温等离子体改性的芳纶1414的断裂强力较原样下降了6.3%,静摩擦因数上升了15.7%,表面接触角减小了36.8%,纤维表面出现微小均匀的凹槽,增大了比表面积,引入了自由基团,增大了表面反应活性,从而改善了与树脂基体复合时的黏结强度。  相似文献   

8.
选用硅烷偶联剂KH-550,KH-560和钛酸酯偶联剂NDZ-201作为表面改性剂,对超高相对分子质量聚乙烯(UHMWPE)冻胶纤维在萃取阶段进行表面处理,经干燥、超拉伸制得表面改性UHMWPE纤维。采用红外光谱仪、接触角测量仪测定了纤维的表面化学结构和表面润湿性能,采用单纤维树脂包埋-拔出法测定了纤维与树脂基体的界面剪切强度,比较了改性前后纤维的力学性能变化。结果表明:改性后纤维表面引入了极性基团,硅烷偶联剂KH-550对UHMWPE纤维的表面改性效果最好。采用质量分数为1%的硅烷偶联剂KH-550溶液处理后,纤维与环氧树脂间的界面剪切强度提高了87.8%,纤维的断裂强度和模量分别提高了6.9%和32.6%。  相似文献   

9.
为了改善芳纶纤维增强树脂基复合材料的界面粘结性能,从树脂基体入手,依据相似相容原理和芳纶的结构特点,合成出新型热固性树脂(AFR–T)用作芳纶复合材料的基体,以未经表面处理的芳纶作增强材料,采用热压成型法制备了AFR–T/芳纶纤维复合材料,并通过测定溶度参数、接触角、线膨胀系数、层间剪切强度(ILSS)和横向拉伸强度等方法研究了复合材料的界面粘结性能。结果表明,AFR–T树脂浇注体与芳纶的溶度参数相近,AFR–T树脂溶液在芳纶纸表面的接触角为36.9°,小于环氧树脂(EP)溶液与芳纶纸的接触角(53.2°),说明AFR–T树脂对芳纶的浸润性优于EP;AFR–T/芳纶纤维复合材料的ILSS和横向拉伸强度为73.0 MPa和25.3 MPa,分别比EP/芳纶纤维复合材料提高了25.9%和32.5%,这表明AFR–T树脂与芳纶纤维之间的浸润性和界面粘结性能较好。  相似文献   

10.
采用硅烷偶联剂KH-550对芳纶进行表面处理,以此提高芳纶的摩擦性和表面浸润性。通过对改性前后芳纶的表面性能进行测试分析,得出经硅烷偶联剂KH-550处理后芳纶的润湿性增强,纤维表面粗糙度和比表面积增大,表面活性基团数目增多,纤维结晶度降低,热性能几乎不受影响,纤维与树脂的粘结性得到了提高。这些变化说明处理后纤维与树脂的界面结合性能增加,也可进一步提高复合材料的力学性能。  相似文献   

11.
在250℃条件下以空气氧化热处理改性芳纶纤维,通过红外光谱(FTIR)、Raman光谱、X射线衍射(XRD)、扫描电子显微镜(SEM)研究了热氧化处理时间对芳纶纤维表面基团和聚集态结构的影响。FTIR结果表明,热处理过程中纤维表面皮层分子链重排,氢键重构,100 min的热处理时间能够使纤维表层的分子链重新排列取向完成,延长处理时间对表层结晶度影响不大。XRD研究表明芳纶纤维热处理60 min后结晶度达到最大,继续延长热处理时间纤维表层的含氧量变化并不明显。芳纶纤维在250℃条件下一定时间热处理对纤维的单丝拉伸强度影响并不明显,热处理热120 min,芳纶纤维的单丝拉伸强度为24.5 cN/dtex,与原丝相比提升了约3%。250℃热处理60 min后芳纶纤维与环氧树脂微滴间界面剪切强度增加到18.05 MPa,与原丝相比增加了11.9%。  相似文献   

12.
芳纶纤维因其表面惰性、光滑使其与树脂浸润性差,界面结合强度低。以环氧氯丙烷为介质1,采用60Coγ-射线辐照方法对国产芳纶纤维进行表面改性,以界面剪切强度(IFSS)和层间剪切强度(ILSS)表征芳纶/环氧复合材料界面结合性能。结果表明在400kGy辐照剂量下改性效果最好;经高能辐照处理的芳纶纤维表面能升高,并失去了原有的光滑表面,且纤维表面氧含量有大幅度提高,使得纤维表面活性增大。  相似文献   

13.
预浸料要求树脂基体和增强纤维具有良好的匹配性,为了提高芳纶纤维/环氧树脂预浸料的界面相容性,本文从芳纶纤维表面改性及增韧技术两个方面进行综述,讨论了芳纶纤维物理改性和化学改性方法的优缺点,分析了界面增韧及环氧树脂基体的不同增韧途径,重点介绍了聚氨酯/环氧树脂互穿网络体系.认为芳纶纤维的偶联剂表面处理和聚氨酯增韧环氧树脂相结合,是提高芳纶纤维/环氧树脂预浸料层间剪切强度的的可行途径.  相似文献   

14.
利用L-3,4-二羟基苯丙氨酸(L-DOPA)的氧化自聚合,在杂环芳纶表面修饰聚L-3,4-二羟基苯丙氨酸(PDOPA)活性涂层来提高芳纶的表面活性及耐紫外辐照性能。结果表明:改性后芳纶表面粗糙度显著提高,同时,PDOPA涂层上大量的羧基、羟基等活性单元均有利于增强与环氧树脂的机械锁合力,改性后芳纶/环氧树脂复合材料的界面剪切强度提高了32.0%。此外,上述改性过程对杂环芳纶本身力学性能影响较小,纤维的拉伸强度保持率可以达到100%,基本实现了无损改性。同时,由于PDOPA的保护作用,改性后芳纶的耐紫外辐射性能显著提高;经过168 h紫外线辐照处理后,其拉伸强度保持率可达到92.5%,显著提升了杂环芳纶的耐紫外线辐照特性。  相似文献   

15.
表面处理对Kevlar纤维复合材料界面结合强度的影响   总被引:8,自引:1,他引:7  
为改善芳纶纤维增强树脂基复合材料的界面结合强度,用化学处理法对Kevlar-29纤维进行表面处理,并用傅里叶变换红外光谱和扫描电镜等方法对表面接枝进行鉴定,用单丝拔出试验表征芳纶纤维增强树脂基复合材料的界面结合强度。实验结果表明,纤维经过表面改性后,在单丝断裂强度降低不大的情况下,界面剪切强度显著提高。  相似文献   

16.
常压等离子体改善高性能纤维粘结性的研究   总被引:2,自引:1,他引:1  
以氦气为载气,氧气为反应气体,对高强度聚乙烯和Twaron 1000芳纶两种高性能纤维进行常压等离子体处理,来改善纤维的粘结性能;采用单纤维抽拔实验测定等离子体处理前后纤维与环氧树脂之间的界面剪切力;利用原子力显微镜和X射线光电子能谱仪分析等离子体处理前后纤维表面形态和化学成分的变化。结果表明:高强度聚乙烯纤维和芳纶经常压等离子体处理后,纤维表面粗糙度增加,纤维表面碳元素含量下降,羟基、羧基等含氧或氮的极性基团增加,纤维粘结性能得到提高,但其强度无明显变化。  相似文献   

17.
芳纶与橡胶界面粘合技术的研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
综述提高芳纶/橡胶界面粘合性能主要技术方法的基本原理和研究进展.芳纶表面活化处理包括物理改性和化学改性.物理改性是通过物理技术对芳纶表面进行刻蚀和清洗,引入活性基团;化学改性是利用化学试剂与芳纶表面发生化学反应,通过化学键合或极性作用提高芳纶与基体之间的粘合强度.间苯二酚-甲醛-胶乳体系浸渍处理通过分别与芳纶表面和橡胶大分子作用,改善两者的界面粘合状态.橡胶的增粘改性处理是通过粘合剂与纤维和橡胶的反应促进两者的粘合,通常与表面活化和浸渍处理配合使用.  相似文献   

18.
以环氧氯丙烷为接枝剂,通过高能射线共辐照法对国产芳纶纤维(AFs)进行表面处理,对比了辐照前后芳纶表面形貌、动态接触角、表面自由能及其本体结晶情况变化。用不同辐照剂量下处理的纤维(IAFs-200和IAFs-400)制备了芳纶/环氧(IAFs/ER)复合材料,与未处理纤维相比,共辐照处理的芳纶增强复合材料的界面剪切强度(IFSS)和层间剪切强度(ILSS)分别提高了51.56%和25.79%。辐照处理后纤维表面活性的稳定性良好。  相似文献   

19.
采用未干燥的聚对苯二甲酰对苯二胺(PPTA)纤维,以乙烯基三甲氧基硅烷(VTMS)溶液对其进行表面改性,分析了改性前后PPTA纤维的表面元素、形貌结构以及力学性能的变化,并通过微脱胶法和激光拉曼光谱法研究了PPTA纤维/环氧树脂复合材料的界面剪切强度。结果表明:经VTMS溶液改性后,PPTA纤维表面产生了新的极性官能团,表面粗糙度增加;随着VTMS溶液浓度增大或处理时间增加,PPTA纤维/环氧树脂界面剪切强度逐渐增大,PPTA纤维的力学性能略为降低;较佳改性处理条件为VTMS溶液质量分数6%,处理时间5 min;经VTMS溶液改性处理后,PPTA纤维与树脂间的粘接性能提高,延缓了纤维轴向应力的传递。  相似文献   

20.
尼龙6改性研究   总被引:2,自引:0,他引:2  
采用经化学改性的芳纶纤维增强尼龙6,并通过红外光谱和电镜分析其界面层,结果表明芳纶纤维经异氰酸酯化及封端稳定处理后,其表面所接技的不稳定基团-NCO转化成稳定的-NHCO-,封端结果较为明显;改性后纤维表面附有接枝物,从而使表面粗糙程度大大增加。用挤出和注塑的方法加工了PA6/Kevlar纤维(KF)复合材料,研究了它的拉伸、弯曲和冲击性能破坏形态。力学性能测试表明了改性尼龙6复合材料的拉伸和弯曲强度得到了改善,但冲击性能略为下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号