共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
为解决采用单一特征量预测轴承剩余寿命误差较大、有限数据样本条件下轴承剩余寿命难以估算的问题,提出了一种基于主元特征融合和支持向量机(SVM)的轴承剩余寿命预测方法。该方法采集振动加速度信号构建数据样本,提取有效值、峰值、小波熵等表征轴承退化趋势的特征指标;采用主元分析融合多个特征指标,消除特征间的冗余和相关性,构造出相对多特征的退化特征量;将退化特征量输入SVM模型中进行轴承剩余寿命预测。现场工程应用结果表明,基于主元特征融合和SVM的轴承剩余寿命预测方法可在小样本条件下筛选出包含信号绝大部分信息的主元,从而在保证预测精度的同时,减少了计算量。 相似文献
4.
针对滚动轴承寿命准确预测缺乏表征其健康状态的可靠退化指标的问题,提出径向基(RBF)神经网络及带有漂移参数的维纳(Wiener)模型进行剩余寿命预测。首先,使用小波包奇异谱熵提取轴承振动信号初始特征;其次,利用早期无故障样本特征和失效样本特征训练RBF神经网络模型,将已提取特征全寿命数据输入到RBF神经网络模型,计算隶属度,作为轴承退化指标;最后,根据滚动轴承的退化轨迹,选择不同Wiener模型进行退化建模,根据AIC信息准则和对数似然值选择合适的模型,利用极大化轮廓似然函数在线更新模型参数,预测轴承寿命。结果表明,所提出的轴承退化指标能够表征健康状态,基于该退化指标的Wiener模型能够准确预测轴承的剩余寿命。 相似文献
6.
为保证设备正常运行并准确预测轴承剩余寿命,提出二维卷积神经网络与改进WaveNet组合的寿命预测模型.为克服未优化的递归网络在预测训练过程中易出现梯度消失问题,该模型引入了WaveNet时序网络结构.针对原始WaveNet结构不适用滚动轴承振动数据情况,将WaveNet结构改进与二维卷积神经网络结合应用于滚动轴承寿命预测.模型利用二维卷积网络提取一维振动序列的特征,随后特征输入WaveNet并进行滚动轴承的预测寿命.改进模型相比于深度循环网络计算效率更高、结果更准确,相比于原始CNN-WaveNet-O模型预测结果更准确.相比于深度长短期记忆网络模型,改进方法预测结果均方根误差降低了11.04%,评分函数降低了11.34%. 相似文献
7.
武器装备担负保卫国土安全的重要使命,其保持稳定运行状态具有重大国防、政治意义;因其装备运行状态不便中断、故障定位过程复杂,使得传统维修方式效率较低;装备使用数据具有连续性、长期性、不平稳性,甚至一些深度学习模型无法处理其中的退化状态历史依赖与关联问题;通过构建元器件层级的剩余寿命预测架构,对特征工程、退化指标构建以及Transformer-Bi-LSTM模型开展研究,采用距离编码技术,实现针对深度学习模型的技术创新,优化模型预测效果;基于某型武器装备主要器件正常试样数据,进行本方法分析验证,在器件已运行时间达到90%设计试验寿命长度时能够进行有效且准确的剩余寿命预测,所提方法满足武器装备器件寿命预警及更换提醒、保障装备战备完好性的应用需求。 相似文献
8.
为了准确预测腐蚀管道剩余寿命,提高预测精度,提出基于主成分分析(PCA)和鸽群优化算法(PIO)的快速学习网(FLN)预测模型,用于管道剩余寿命预测。通过PCA提取关键腐蚀因素,降低预测指标维度;采用PIO对FLN的输入权值及隐层阈值进行优化,提升预测精度。为检验模型效能,以某注水管道的50组数据为例进行研究,并与FLN、BP两组模型对比分析,结果表明:PCA-PIO-FLM模型的MAE、MAPE、RMSE分别为0.036、0.553、0.0014,均优于对比模型,证明了所构建模型能够准确预测注释管道剩余寿命。 相似文献
9.
多种多样的失效模式之间相互影响,在本质上看就是竞争失效的结果,这会增加航空发动机剩余寿命的预测难度。根据航空发动机的多种失效模式的相关规律、特点,指出了对航空发动机剩余寿命进行预测的大体框架、模型和相关的算法,也就是所说的在竞争失效的基础上预测航空发动机的剩余寿命。 相似文献
10.
动车组转向架轴箱的寿命作为衡量转向架性能的重要指标,主要受材料、工艺、质量、载荷、保养、工况等因素影响。为解决单一工况预测轴箱故障发生时间不准确问题,需充分考虑多工况因素,基于全生命周期构建转向架轴箱剩余寿命预测模型。本文通过对比分析多工况与轴箱的相互影响关系,采用大数据和机器学习算法,设计出一种基于长短记忆神经网络(LSTM)的轴箱相对温升与里程的剩余寿命预测方法。该方法能精确地刻画轴箱性能退化特征模型,可在动车运行过程中实时预测转向架轴箱故障发生率,较大幅度地提高动车组转向架轴箱剩余寿命预测的实效性、准确性。 相似文献
11.
Remaining Useful Life (RUL) prediction play a crucial part in bearing maintenance, which directly affects the production efficiency and safety of equipment. Moreover, the accuracy of the prediction model is constrained by the feature extraction process and full life data of bearings. In this paper, the life prediction method of faulty rolling bearing with limited data is presented including degradation state model and RUL prediction model. In order to obtain health indication (HI) without human interference in the degradation state modeling stage, the bottleneck structure of Stacked Autoencoder (SAE) is utilized to fuse the four selected features into one HI using Intelligent Maintenance Systems (IMS) bearing dataset as training sample. In RUL prediction model, the Long Short-Term Memory (LSTM) neural network is carried out to establish the model with Standard deviation (Std) input and HI training label. In order to solve the problem of large training error caused by insufficient data in the failure stage of bearing acceleration test, the third-order spline curve interpolation is utilized to enhance the data points. Through parameter analysis, the RMSE and MAE of the test set on the prediction model are 0.032582 and 0.024038, respectively. Furthermore, the effectiveness of the proposed method is further validated by dataset from Case Western Reserve University (CWRU) with different bearing fault degrees. The analysis indicates that the RUL prediction of bearing fault data is consistent with the size of artificial added faults, that is,the more severe the fault the shorter the time of remaining life. The results validate that the proposed method can effectively extract the bearing health state by incorporating feature fusion and establish accurately prediction model for bearing remaining life. 相似文献
12.
对航空发动机进行实时状态监测和健康管理可以有效降低发动机故障风险,确保飞机飞行安全。准确预测航空发动机的剩余寿命是有效监测发动机运行状态的一种重要手段,其中长短期记忆(long-short term memory,LSTM)网络常被使用。但由于航空发动机复杂的机械结构与运行模式,使用传统的LSTM网络对航空发动机的剩余寿命进行单次预测后,所得预测结果的准确率不足以满足其寿命预测的精度要求。基于LSTM网络的广泛使用以及它对时间序列数据的有效预测能力,考虑到采用多级预测的方法能够有效降低预测误差,提出了一种新型的可自动扩展的长短期记忆(automatically expandable LSTM,AELSTM)预测模型。AELSTM模型依托多个子模块逐级连接的网络结构,不断地提取前一级模块的输出误差作为后一级模块的训练值,形成了误差的多级预测机制,有效降低了模型的预测误差,提升了预测结果的准确性。基于美国国家航空航天局发布的C-MAPSS数据集的四个子集对AELSTM模型的预测效果进行了测试,实验结果表明,与传统的LSTM网络相比,AELSTM模型在四个子集上的均方根误差平均减少了95.44%,同时它的预测效果也优于现有的一些先进算法。实验充分验证了AELSTM模型在提升航空发动机剩余寿命预测准确度方面的有效性及优势。 相似文献
13.
针对现有的剩余寿命预测方法对原始数据利用率不高以及多维数据特征提取能力不足的问题,提出了一种基于特征增强和时空信息嵌入的卷积神经模型。首先,通过特征增强模块在原始数据基础上进一步提取工况特征与手工特征作为辅助特征;其次,提出了时空嵌入模块,对原始数据进行时空信息编码以嵌入时间序列信息和空间特征信息;最后,拼接上述特征并通过回归预测模块捕获数据内在关系得到回归预测结果。在通用的涡扇发动机模拟数据集(C-MAPSS)上对该模型预测效果进行了测试。实验结果表明,与现有主流深度学习方法相比,该模型在四个子集上的均方根误差平均减少了8.8%,且在多工况的运行条件和故障类型下,其预测精度均优于现有先进算法,充分证明了该模型在涡扇发动机剩余使用寿命预测方面的有效性和准确性。 相似文献
14.
传统的滚动轴承寿命预测方法缺乏明确的学习机制,无法有效识别不同时序特征之间的差异并突出重要特征,影响其预测精度.为克服上述缺点,本文提出了一种基于卷积注意力长短时记忆网络(CAN-LSTM)的剩余使用寿命预测模型.该模型主要由两部分组成:前端为卷积注意力网络(CAN),学习通道和时间维度中的深层故障特征,提高特征的表征能力;后端为改进LSTM网络,基于退化特征对轴承进行寿命预测.归一化健康指标至[0,1]区间内,得到相同的失效阈值;使用五点平滑法对预测结果进行处理,实现预测结果的输出;利用留一法对轴承全寿命试验数据进行验证,测试模型的准确性和适应性.试验结果表明:所提模型的平均均方根误差和平均绝对值误差比仅用CNN模型预测值低54.12%和59.05%,比仅用LSTM模型预测值低39.06%和43.42%,比卷积长短时记忆网络(CNN-LSTM)低20.41%和25.86%. 相似文献
15.
针对当前软件剩余使用寿命预测方法忽略了多性能指标间所蕴涵寿命信息的问题,提出一种融合多性能指标Transformer(TransMP)模型的Web系统剩余寿命预测方法。首先,搭建内存故障型Web系统加速老化实验平台,创建包含内存使用量、响应时间和吞吐率性能指标的数据集;其次,考虑不同性能指标蕴涵老化特征信息的差异性,构造由多编码器-解码器组成的TransMP模型,将性能指标数据分别输入内存指标编码器、响应时间编码器和吞吐率编码器提取老化特征信息,再引入特征融合层进行信息融合;最后,将融合信息输入由掩码注意力-多头注意力结构构成的解码器,预测得到系统状态达到老化阈值的剩余寿命。实验结果表明,该Web系统剩余寿命预测方法与最优的SALSTM方法相比,均方根误差分别降低了12.0%、17.3%和13.2%,平均绝对误差分别降低了13.3%、21.0%和10.4%,证明了该方法的有效性。 相似文献
16.
航空发动机轴承早期故障多是由于裂纹、疲劳剥落和保持架损坏造成的,这类型的故障在发动机振动信号中均会产生瞬时的冲击;但是,在早期故障中,振动信号由于夹杂过多部件耦合激励,缺陷冲击信号很难辨识,早期故障诊断十分困难;采用了基于卷积自编码网络的航空发动机轴承早期冲击故障特征提取方法,通过分析信号中冲击成分的周期性,利用卷积自编码网络的平移不变学习特性,自动捕获信号中的周期成分,将信号分解为由卷积核重构的多个特征分量,实现信号特征分量的自学习,考虑到峭度指标对信号冲击成分描述的特点,使用峭度指标作为最优特征分量的选取指标,进而实现早期冲击故障特征的提取;最后利用仿真数据和轴承数据验证了该方法的有效性. 相似文献
17.
针对航空发动机剩余使用寿命(RUL)预测方法没有同时加权不同时间步下的数据,包括原始数据和所提取的特征,导致RUL预测准确性较低的问题,提出了一种基于优化混合模型的RUL预测方法。首先,选用三种不同的路径提取特征:1)将原始数据的均值和趋势系数输入至全连接网络;2)将原始数据输入双向长短期记忆(Bi-LSTM)网络,并采用注意力机制处理得到的特征;3)使用注意力机制处理原始数据,并将加权特征输入至卷积神经网络(CNN)和Bi-LSTM网络中。然后,采用融合多路径特征预测的思想,将上述提取到的特征融合后输入至全连接网络获得RUL预测结果。最后,使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证方法的有效性。实验结果显示,所提方法在4个数据集上均有较好的表现。以FD001数据集为例,所提方法的均方根误差(RMSE)比Bi-LSTM网络降低了9.01%。 相似文献