共查询到20条相似文献,搜索用时 15 毫秒
1.
D. R. Marpaka M. Bodruzzaman S. S. Devgan S. M. Aghili S. Kari 《Electric Power Systems Research》1994,30(3):251-256
In this paper a systematic procedure to design an intelligent neurocontroller to assess the dynamic security of interconnected power systems is presented. This approach focuses on the integration of modern control theory together with the adaptive networks to determine critical clearing time for power systems. 相似文献
2.
应用轨迹灵敏度计算临界切除时间新方法研究 总被引:6,自引:1,他引:6
文章提出对故障切除时间轨迹灵敏度的概念和算法。研究了将该轨迹灵敏度映射为(归一化和修正)能量函数的)最小动能灵敏度的方法。并应用上述结果发展了故障临界切除时间的灵敏度分析方法。该方法的优点是灵敏度分析对系统模型没有限制,且具有过程简单、计算效率高的特点。当故障切除时间略大于临界切除时间时,仅需要一次仿真就可以准确地估算临界切除时间。在工程上,该方法可用于快速分析故障的稳定裕度。在10机39节点新英格兰典型电力系统上分析结果验证了该临界切除时间估算算法的精度和有效性。 相似文献
3.
Elmer Sorrentino 《Electric Power Systems Research》2012,82(1):95-97
Two assessment modes for critical clearing times were analyzed in a power system taken as example: (a) with simultaneous tripping at both line ends; (b) with instantaneous tripping at one line end (zone-1 of distance relays), for computing the critical clearing times for the other end (zone-2 of distance relays). Both results are different, and an analysis of these results is included. The results of computing critical clearing times for zone-2 of distance relays when the other end operates in zone-1 have some advantages for the analysis of practical situations. 相似文献
4.
This paper describes an approach using an adaptive neuro-fuzzy inference system (ANFIS) for the assessment of online critical clearing time (CCT). The ANFIS can integrate neural networks and fuzzy logic principles, and has a potential to combine the advantages of both in a single framework. In this paper, the ANFIS is applied for the prediction of CCT by varying load levels and fault locations in buses and transmission lines. The IEEE 39-bus system and 9-bus western system coordinating council are tested and implemented in this study. All machines of the IEEE 39-bus system are considered as the classical model without considering any generator’s exciters. While three machines in the 9-bus western system coordinating council are considered as detailed models, forth-order differential equation is described for all machines by considering the excitation system controller. CCT values obtained by the time domain simulation method using step-by-step calculation are used as the benchmark. The power world version 17 is used for transient simulation, and the ANFIS is implemented using MATLAB version 2014B. The results obtained from the ANFIS approach are quite satisfied with high accurate solutions and much lower computation time. Finally, the graphical user interface in MATLAB is applied for the online CCT estimation of two test power systems by using appropriate ANFIS models obtained from simulations. 相似文献
5.
基于轨迹灵敏度的电力系统动态安全预防控制算法研究 总被引:3,自引:2,他引:3
提出了一种基于轨迹灵敏度的动态安全调度新方法.该方法首先滤除系统中的无危害故障,通过故障排序选取最严重故障并鉴别最领先发电机,然后依据最严重故障的临界切除时间和其最领先发电机有功输出的近似线性关系,计算最领先发电机至少需要调整的有功输出量,以使最严重故障的临界切除时间大于实际故障切除时间,通过故障中及故障后的系统仿真计算轨迹灵敏度,并依据故障切除后设定时刻领先发电机功角对各发电机有功输出的灵敏度数值,计算全系统内各发电机有功输出的调整量.最后通过对新英格兰10机39节点系统的计算验证了算法的有效性. 相似文献
6.
7.
Yu-Jen Lin 《International Journal of Electrical Power & Energy Systems》2011,33(10):1776-1783
Power system preventive control is dominated by generation rescheduling. Other preventive control actions are rarely mentioned in the literature. This paper presents a transient stability preventive control design that takes series compensation into account. The design methodology is aided with the ‘IF-THEN’ rules extracted from a trained multilayer perceptron (MLP) artificial neural network (ANN). The proposed method can add more degrees of freedom by incorporation of series compensation, and have additional flexibility in deploying preventive control actions. Two preventive control schemes are presented and applied to 39-bus power systems. Extensive computational studies have demonstrated the effectiveness of the proposal. 相似文献
8.
基于复合神经网络的电力系统暂态稳定评估和裕度预测 总被引:1,自引:0,他引:1
提出一种基于复合神经网络的暂态稳定评估与故障临界切除时间(CCT)裕度预测新方法,它将概率神经网络(PNN)和径向基函数(RBF)网络组合使用,充分利用两者各自的优点,以提高暂态稳定评估能力和CCT裕度预测能力。该方法首先利用PNN进行暂态事故场景分类,分类时充分考虑了相邻故障样本类型重叠的影响;进一步采用RBF网络对分类结果进行裕度预测;最后,通过自检和校正以提高预测精度。利用New England 39节点系统,通过与反向传播(BP)神经网络、RBF神经网络等方法的比较,证明了本文方法的优越性。 相似文献
9.
Transient stability constrained optimal power flow (TSCOPF) is a nonlinear optimization problem with both algebraic and differential equations. This paper utilizes the Imperialist Competitive Algorithm (ICA) as an evolutionary optimization algorithm and Artificial Neural Network (ANN) to develop a robust and efficient two stages scheme to solve TSCOPF problem. In the first stage an Artificial Neural Network is constructed to predict the rotor-angle transient stability margin, and is then incorporated in the TSC-OPF as the transient stability estimator. To solve the proposed TSC-OPF problem the ICA is used as the optimizer. The performance of the proposed method is verified over the WSCC three-machine, nine-bus system under different loading conditions and fault scenarios. 相似文献
10.
一种临界故障切除时间概率分布的求解方法 总被引:6,自引:4,他引:6
稳定性分析是电力系统运行与控制中必须考虑的一个以及半不变量的性质,在敏感度计算的基础上,将临界故障最基本的问题。传统稳定分析是在确定系统初始参数后进行的。由于某些原因,电力系统的初始参数,如母线负荷等,因得不到其确定值而只能知道其可能分布。这使得传统的稳定分析方法已不能适用于新的形势,为此提出了概率稳定分析这一新的课题。该文提出一种新的临界故障切除时间概率分布的求取方法,利用随机变量的Cram-Charlier级数展开式切除时间概率分布的求取转化为对初始参数的半不变量的求取。该算法在39机系统中进行了测试,与Monte-Carlo仿真结果相比,该算法不需要反复进行大量的数值仿真的采样计算,而只需在确定临界故障切除时间的灵敏度时进行一次数值仿真;计算结果能很好地描述临界故障切除时间的实际概率分布,且能显著地减少计算量,提高计算速度。利用该方法,可根据故障后临界故障切除时间的概率分布,确定临界故障切除时间分布在期望值附近某区间内的概率,为稳定分析提供了判断的依据。 相似文献
11.
电力系统暂态稳定域估计的现状与展望 总被引:1,自引:0,他引:1
文章对近三十年来电力系统暂态稳定域估计的方法作了简要回顾,对各种方法的优缺点进行了评价,对近年来发展起来的稳定边界理论及BCU法作了重点介绍,并在比较各方法的基础上提出了稳定域估计的发展方向。 相似文献
12.
本文给出了用人工神经网络硬件构成的汽门控制器的适应性实验结果,控制器采用BP网络离线训练。动态物理模拟实验结果表明,神经网络汽门控制器具有较好的适应性。 相似文献
13.
Lalit Chandra Saikia Sukumar Mishra J. Nanda 《International Journal of Electrical Power & Energy Systems》2011,33(4):1101-1108
This paper deals with automatic generation control (AGC) of a three unequal area hydrothermal system. Reheat turbines in thermal areas and electric governor in hydro area are considered. Appropriate generation rate constraints are considered in the areas. Bacterial foraging (BF) technique is used to simultaneously optimize the integral gains (KIi) and speed regulation parameter (Ri) keeping frequency bias fixed at frequency response characteristics. The integral controller in this case is termed as BFIC. The performance of a multilayer perception neural network (MLPNN) controller using reinforcement learning is evaluated for the system. In this reinforcement learning, the weights are dynamically adjusted online using backpropagation algorithm with error being the area control error (ACE). The performance of the MLPNN controller is compared with that of BFIC. Also, the performance of MLPNN controller over a wide range of system loading conditions and step load perturbations is compared with BFIC. Investigations clearly reveal the superior performance of MLPNN controller over BFIC. Sensitivity analysis subject to wide changes in system loading, inertia constant (H) and size and location of step load perturbation is carried out to investigate the robustness of the controller with the optimum KIi and Ri obtained at nominal condition. 相似文献
14.
基于时间裕度的全局电力系统暂态安全风险评估 总被引:13,自引:3,他引:10
利用预想事故的时间裕度和发生概率定义了预想事故的风险指标,并定义了度量系统在特定类型事故集合下的暂态安全风险指标,然后据此提出了一种对系统进行暂态安全评估的方法。该方法使得将某类型预想事故的评价结果联合起来评估全系统在该类型预想事故集合下的暂态安全性成为可能。计算实例验证了该方法的有效性。 相似文献
15.
Dheeman ChatterjeeArindam Ghosh 《International Journal of Electrical Power & Energy Systems》2011,33(3):531-539
This paper discusses the use of trajectory sensitivity analysis (TSA) in determining the transient stability margin of a power system compensated by a shunt FACTS device. The shunt device used is static synchronous compensator (STATCOM). It is shown that TSA can be used for the design of controller for the STATCOM. The preferable locations for the placement of the STATCOM for different fault conditions are also identified. The effects of STATCOM in maintaining different bus voltages in the post-fault condition are studied. The STATCOM is modeled by a voltage source connected to the system through a transformer. The systems used for the study are the WSCC 3-machine 9-bus system and the IEEE 16-machine 68-bus system. 相似文献
16.
基于相量测量技术和模糊径向基网络暂态稳定性预测 总被引:30,自引:7,他引:30
提出一种新的基于模糊聚类的径向基神经网络及其训练算法,利用同步相量测量装置获得的故障后短时间内各发电机的功角,经简单运算后作为神经网络的输入,其输出为多机电力系统稳定性的分类结果。对49机实际系统在不同接线方式和故障位置条件下,进行了有无切机控制两种情况下的数值仿真实验,结果表明所提出的方法对系统的失稳预测和切机控制决策是有效的,神经网络训练时间短,分类精度高。 相似文献
17.
系统遭遇暂态故障的过程是随时间发展的过程,基于传统机器学习的暂态稳定评估方法通常难以捕捉其时间维度信息,限制了评估性能的提高。针对该问题,提出了一种基于一维卷积神经网络(1D-CNN)的暂态稳定评估方法。该方法直接面向底层量测数据,凭借其特有的一维卷积和池化运算特性,能自动提取出暂态过程所蕴含的时序特征,从而达到对系统暂态稳定状态准确刻画的目的。设计了一种适用于暂态稳定评估的四卷积层1D-CNN模型,实现了端到端的\"时序特征提取+暂态稳定性分类\",并通过调整模型关键参数以提高失稳样本查全率,增强了评估结果的可靠性。新英格兰10机39节点测试系统的仿真实验表明,相较于传统机器学习暂态稳定评估方法,所提方法能以更短的响应时间做出更准确的暂态稳定性判断,满足在线暂态稳定评估准确性与快速性的要求。 相似文献
18.
19.
20.
目前电力系统暂态稳定性评估(TSA)大多采用标准算例生成的数据集,然而实际电网的母线、发电机、线路等电力元件的数量巨大,难以实现评估模型的实时监视和在线更新;而现有降维方法常常遗漏重要信息,导致预测精度下降。提出一种图像化数据驱动的电力系统暂态稳定性在线评估方法,将输入时间序列重新排列成二维图像,利用二维主成分分析法(2D-PCA)对原始图像进行特征降维,并建立卷积神经网络(CNN)模型进行系统稳定性预测。在IEEE-39算例中进行验证,结果表明本文所提基于2D-PCA和CNN的TSA模型在保证预测精度的同时能够大幅提高训练效率,有望推进深度学习在电力系统暂态稳定性在线评估的应用。 相似文献