首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
目的 深度卷积网络在图像超分辨率重建领域具有优异性能,越来越多的方法趋向于更深、更宽的网络设计。然而,复杂的网络结构对计算资源的要求也越来越高。随着智能边缘设备(如智能手机)的流行,高效能的超分重建算法有着巨大的实际应用场景。因此,本文提出一种极轻量的高效超分网络,通过循环特征选择单元和参数共享机制,不仅大幅降低了参数量和浮点运算次数(floating point operations,FLOPs),而且具有优异的重建性能。方法 本文网络由浅层特征提取、深层特征提取和上采样重建3部分构成。浅层特征提取模块包含一个卷积层,产生的特征循环经过一个带有高效通道注意力模块的特征选择单元进行非线性映射提取出深层特征。该特征选择单元含有多个卷积层的特征增强模块,通过保留每个卷积层的部分特征并在模块末端融合增强层次信息。通过高效通道注意力模块重新调整各通道的特征。借助循环机制(循环6次)可以有效提升性能且大幅减少参数量。上采样重建通过参数共享的上采样模块同时将浅层与深层特征进放大、融合得到高分辨率图像。结果 与先进的轻量级网络进行对比,本文网络极大减少了参数量和FLOPs,在Set5、Set14、B100、Urban100和Manga109等基准测试数据集上进行定量评估,在图像质量指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上也获得了更好的结果。结论 本文通过循环的特征选择单元有效挖掘出图像的高频信息,并通过参数共享机制极大减少了参数量,实现了轻量的高质量超分重建。  相似文献   

2.
在基于深度学习的图像超分辨率重建领域,通过扩大网络规模以提高性能将导致计算资源损耗增加。为此,提出了一种轻量级的基于金字塔池化注意力机制网络(light-weighted pyramid pooling-based attention network,LiPAN),该算法模型由融合注意力机制的信息蒸馏块、多层金字塔池化结构和反向注意力融合模块组成。注意力机制确保了网络对重要特征的提取,金字塔池化结构可获取更多的上下文信息,得到更准确的重建结果,蒸馏结构的引入可有效地提高网络性能并减少网络参数。与目前主流的轻量级网络模型相比,提出的LiPAN模型在Set5、Set14、BSD100及Urban100四个公共数据集分别进行2倍、3倍和4倍下采样重建并定量评估,获得最优峰值信噪比和结构相似度。由此表明,提出的LiPAN在网络模型参数与当前主流的轻量级网络相当的情况下,具有更优的超分辨率重建性能。  相似文献   

3.
轻量级卷积神经网络具有参数量较小、计算量较小、推理速度较快等特点,但性能受到极大限制.为了进一步提升轻量级图像超分辨率网络的性能,文中提出基于区域互补注意力和多维注意力的轻量级图像超分辨率网络.网络基本构件是双支路的多交互残差块,可有效融合多尺度特征.为了提高特征的利用率和表达能力,设计轻量且有效的区域互补注意力,使特征图不同区域的信息互相补充.同时设计多维注意力,分别在通道维和空间维建模像素间的依赖关系.实验表明文中网络性能较优,并将当前轻量级超分辨率网络的复杂度和性能平衡提升到一个较高水平.  相似文献   

4.
现有的基于深度学习的单张图像超分辨率(single image super-resolution, SISR)模型通常是通过加深网络层数来提升模型的拟合能力,没有充分提取和复用特征,导致重建图像的质量较低。针对该问题,提出了基于特征融合和注意力机制的图像超分辨率模型。该模型在特征提取模块使用残差中嵌入残差(residual in residual, RIR)的结构,该网络的特征提取模块由包含多个残差块的残差组构成,并且在每个残差组内进行局部特征融合,在每个组之间进行全局特征融合。此外,在每一个残差块中引入坐标注意力模块,在每一个残差组中引入空间注意力模块。经验证,该模型能充分提取特征并且复用特征。实验最终结果表明,该模型在客观评价指标和主观视觉效果上都优于现有的模型。  相似文献   

5.
孙超文  陈晓 《自动化学报》2021,47(7):1689-1700
针对现有图像超分辨率重建方法恢复图像高频细节能力较弱、特征利用率不足的问题, 提出了一种多尺度特征融合反投影网络用于图像超分辨率重建. 该网络首先在浅层特征提取层使用多尺度的卷积核提取不同维度的特征信息, 增强跨通道信息融合能力; 然后,构建多尺度反投影模块通过递归学习执行特征映射, 提升网络的早期重建能力; 最后,将局部残差反馈结合全局残差学习促进特征的传播和利用, 从而融合不同深度的特征信息进行图像重建. 对图像进行×2 ~ ×8超分辨率的实验结果表明, 本方法的重建图像质量在主观感受和客观评价指标上均优于现有图像超分辨率重建方法, 超分辨率倍数大时重建性能相比更优秀.  相似文献   

6.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

7.
本文针对现有光学遥感图像超分辨率重建模型对感受野尺度关注不足和对特征通道信息提取不充分带来的问题, 提出了一种基于多尺度特征提取和坐标注意力的光学遥感图像超分辨率重建模型. 该重建模型基于深度残差网络结构, 在网络的高频分支中设计了多个级联的多尺度特征和坐标注意力模块 (multi-scale feature & coordinate attention block, MFCAB), 对输入的低分辨率光学遥感图像的高频特征进行充分发掘: 首先, 在MFCAB模块中引入Inception子模块, 使用不同尺度的卷积核捕捉不同感受野下的空间特征; 其次, 在Inception子模块后增加坐标注意力子模块, 同时关注通道与坐标两个维度, 以获得更好的通道注意力效果; 最后, 对各MFCAB模块提取的特征进行多路径融合, 实现多重多尺度空间信息与通道注意信息的有效融合. 本文模型在NWPU4500数据集上2倍、3倍放大中PSNR值达到34.73 dB和30.12 dB, 较EDSR分别提升0.66 dB和0.01 dB, 在AID1600数据集上2倍、3倍、4倍放大中PSNR值达到34.71 dB、30.58 dB、28.44 dB, 较EDSR分别提升0.09 dB、0.03 dB、0.04 dB. 实验结果表明, 该模型在光学遥感图像数据集上的重建效果优于主流的图像超分辨率重建模型.  相似文献   

8.
目前,单幅图像超分辨率重建取得了很好的效果,然而大多数模型都是通过增加网络层数来达到好的效果,并没有去发掘各通道之间的相关性。针对上述问题,提出了一种基于通道注意力机制(CA)和深度可分离卷积(DSC)的图像超分辨率重建方法。整个模型采用多路径模式的全局和局部残差学习,首先利用浅层特征提取块来提取输入图像的特征;然后,在深层特征提取块中引入通道注意力机制,通过调整各通道的特征图权重来增加通道相关性,从而提取高频特征信息;最后,重建出高分辨率图像。为了减少注意力机制带来的巨大参数影响,在局部残差块中使用了深度可分离卷积技术以大大减少训练参数,同时采用自适应矩估计(Adam)优化器来加速模型的收敛,从而提高了算法性能。该方法在Set5、Set14数据集上进行图像重建,实验结果表明不仅该方法重建的图像具有更高的峰值信噪比(PSNR)和结构相似度(SSIM),而且所提模型的参数量减少为深度残差通道注意力网络(RCAN)模型的参数量的1/26。  相似文献   

9.
目的 深度学习在视频超分辨率重建领域表现出优异的性能,本文提出了一种轻量级注意力约束的可变形对齐网络,旨在用一个模型参数少的网络重建出逼真的高分辨率视频帧。方法 本文网络由特征提取模块、注意力约束对齐子网络和动态融合分支3部分组成。1)共享权重的特征提取模块在不增加参数量的前提下充分提取输入帧的多尺度语义信息。2)将提取到的特征送入注意力约束对齐子网络中生成具有精准匹配关系的对齐特征。3)将拼接好的对齐特征作为共享条件输入动态融合分支,融合前向神经网络中参考帧的时域对齐特征和原始低分辨率(low-resolution,LR)帧在不同阶段的空间特征。4)通过上采样重建高分辨率(high-resolution,HR)帧。结果 实验在两个基准测试数据集(Vid4(Vimeo-90k)和REDS4(realistic and diverse scenes dataset))上进行了定量评估,与较先进的视频超分辨率网络相比,本文方法在图像质量指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)方面获得...  相似文献   

10.
目的 经典的人眼注视点预测模型通常采用跳跃连接的方式融合高、低层次特征,容易导致不同层级之间特征的重要性难以权衡,且没有考虑人眼在观察图像时偏向中心区域的问题。对此,本文提出一种融合注意力机制的图像特征提取方法,并利用高斯学习模块对提取的特征进行优化,提高了人眼注视点预测的精度。方法 提出一种新的基于多重注意力机制(multiple attention mechanism, MAM)的人眼注视点预测模型,综合利用3种不同的注意力机制,对添加空洞卷积的ResNet-50模型提取的特征信息分别在空间、通道和层级上进行加权。该网络主要由特征提取模块、多重注意力模块和高斯学习优化模块组成。其中,空洞卷积能够有效获取不同大小的感受野信息,保证特征图分辨率大小的不变性;多重注意力模块旨在自动优化获得的低层丰富的细节信息和高层的全局语义信息,并充分提取特征图通道和空间信息,防止过度依赖模型中的高层特征;高斯学习模块用来自动选择合适的高斯模糊核来模糊显著性图像,解决人眼观察图像时的中心偏置问题。结果 在公开数据集SALICON(saliency in context)上的实验表明,提出的方法相较于同结...  相似文献   

11.
针对现有肺炎医学影像识别研究在浅层网络忽略全局特征导致特征提取不全且模型规模较大的问题, 提出了一种基于CNN和注意力机制的轻量化模型提高肺炎类型的识别效率. 采用轻量化模型结构减少模型参数量, 通过增大卷积核, 引入高效通道注意力和自注意力机制解决网络重要信息丢失和无法提取底层全局信息的问题, 通过双分支并行提取局部和全局信息并使用多尺度通道注意力提高二者融合质量, 使用CLAHE算法优化原始数据. 实验结果表明, 该模型在保证轻量性的同时准确率、灵敏度、特异性较原模型分别提高2.59%, 3.1%, 1.38%, 并优于当前优秀的其他分类模型, 具有更强的实用性.  相似文献   

12.
目的 图像超分辨率重建的目的是将低分辨率图像复原出具有更丰富细节信息的高分辨率图像。近年来,基于Transformer的深度神经网络在图像超分辨率重建领域取得了令人瞩目的性能,然而,这些网络往往参数量巨大、计算成本较高。针对该问题,设计了一种轻量级图像超分辨率重建网络。方法 提出了一种轻量级图像超分辨率的蓝图可分离卷积Transformer网络(blueprint separable convolution Transformer network,BSTN)。基于蓝图可分离卷积(blueprint separable convolution,BSConv)设计了蓝图前馈神经网络和蓝图多头自注意力模块。然后设计了移动通道注意力模块(shift channel attention block,SCAB)对通道重点信息进行加强,包括移动卷积、对比度感知通道注意力和蓝图前馈神经网络。最后设计了蓝图多头自注意力模块(blueprint multi-head self-attention block,BMSAB),通过蓝图多头自注意力与蓝图前馈神经网络以较低的计算量实现了自注意力过程。结果 本文方法在4个数据集上与10种先进的轻量级超分辨率方法进行比较。客观上,本文方法在不同数据集上取得了不同程度的领先,并且参数量和浮点运算量都处于较低水平。当放大倍数分别为2、3和4时,在Set5数据集上相比SOTA(state-of-theart)方法,峰值信噪比(peak signal to noise ratio,PSNR)分别提升了0.11dB、0.16dB和0.17dB。主观上,本文方法重建图像清晰,模糊区域小,具有丰富的细节。结论 本文所提出的蓝图可分离卷积Transformer网络BSTN以较少的参数量和浮点运算量达到了先进水平,能获得高质量的超分辨率重建结果。  相似文献   

13.
目的 基于深度学习的图像超分辨率重构研究取得了重大进展,如何在更好提升重构性能的同时,有效降低重构模型的复杂度,以满足低成本及实时应用的需要,是该领域研究关注的重要问题。为此,提出了一种基于通道注意力(channel attention,CA)嵌入的Transformer图像超分辨率深度重构方法(image super-resolution with channelattention-embedded Transformer,CAET)。方法 提出将通道注意力自适应地嵌入Transformer变换特征及卷积运算特征,不仅可充分利用卷积运算与Transformer变换在图像特征提取的各自优势,而且将对应特征进行自适应增强与融合,有效改进网络的学习能力及超分辨率性能。结果 基于5个开源测试数据集,与6种代表性方法进行了实验比较,结果显示本文方法在不同放大倍数情形下均有最佳表现。具体在4倍放大因子时,比较先进的SwinIR (image restoration using swin Transformer)方法,峰值信噪比指标在Urban100数据集上得到了0.09 dB的提升,在Manga109数据集提升了0.30 dB,具有主观视觉质量的明显改善。结论 提出的通道注意力嵌入的Transformer图像超分辨率方法,通过融合卷积特征与Transformer特征,并自适应嵌入通道注意力特征增强,可以在较好地平衡网络模型轻量化同时,得到图像超分辨率性能的有效提升,在多个公共实验数据集的测试结果验证了本文方法的有效性。  相似文献   

14.
目的 现有医学图像超分辨率方法主要针对单一模态图像进行设计,然而在磁共振成像(magnetic resonance imaging, MRI)技术的诸多应用场合,往往需要采集不同成像参数下的多模态图像。针对单一模态的方法无法利用不同模态图像之间的关联信息,很大程度上限制了重建性能。目前超分辨率网络模型参数量往往较大,导致计算和存储代价较高。为此,本文提出了一个轻量级残差密集注意力网络,以一个统一的网络模型同时实现多模态MR图像的超分辨率重建。方法 首先将不同模态的MR图像堆叠后输入网络,在低分辨率空间中提取共有特征,之后采用设计的残差密集注意力模块进一步精炼特征,再通过一个亚像素卷积层上采样到高分辨率空间,最终分别重建出不同模态的高分辨率图像。结果 本文采用MICCAI (medical image computing and computer assisted intervention) BraTS (brain tumor segmentation) 2019数据集中的T1和T2加权MR图像对网络进行训练和测试,并与8种代表性超分辨率方法进行对比。实验结果表明,本文方法可以取得优于...  相似文献   

15.
基于深度学习的图像超分辨率算法通常采用递归的方式或参数共享的策略来减少网络参数,这将增加网络的深度,使得运行网络花费大量的时间,从而很难将模型部署到现实生活中。为了解决上述问题,本文设计一种轻量级超分辨率网络,对中间特征的关联性及重要性进行学习,且在重建部分结合高分辨率图像的特征信息。首先,引入层间注意力模块,通过考虑层与层之间的相关性,自适应地分配重要层次特征的权重。其次,使用增强重建模块提取高分辨率图像中更精细的特征信息,以此得到更加清晰的重建图片。通过大量的对比实验表明,本文设计的网络与其他轻量级模型相比,有更小的网络参数量,并且在重建精度和视觉效果上都有一定的提升。  相似文献   

16.
针对医学磁共振成像(MRI)过程中由于噪声、成像技术和成像原理等干扰因素引起的图像细节丢失、纹理不清晰等问题,提出了基于多感受野的生成对抗网络医学MRI影像超分辨率重建算法.首先,利用多感受野特征提取块获取不同感受野下图像的全局特征信息,为避免感受野过小或过大导致图像的细节纹理丢失,将每组特征分为两组,其中一组用于反馈...  相似文献   

17.
现有的端到端青光眼筛查模型往往忽略细微病变区域而导致过拟合问题,并且其可解释性区域尚不明确.针对上述问题,提出一种语义特征图引导的青光眼筛查方法.利用基于MobileNet v2作为特征提取网络的DeepLab v3+分割模型进行视盘区域的分割定位,并且根据定位结果提取用于青光眼筛查的重点感兴趣区域,再通过设计注意力模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号