共查询到20条相似文献,搜索用时 0 毫秒
1.
视频异常检测需从整段视频中识别帧级别的异常行为。弱监督方法使用正常与异常视频,辅以视频级别标签训练模型,相比无监督视方法展现出了更优越的性能。然而,目前的弱监督视频异常检测方法无法记录视频长期模态,且部分方法为了获得更优的检测效果,利用了未来帧的信息,导致无法在线应用。为此,文中首次提出了一种基于双重动态记忆网络的弱监督视频异常检测方法,通过设计包含两个记忆模块的记忆网络来分别记录视频中长期的正常和异常模态。为了实现视频特征和记忆项的协同更新,采用读操作基于记忆模块中的记忆项对视频帧的特征进行增强,采用写操作基于视频帧特征对记忆项的内容进行更新,同时记忆项的数量在训练的过程中会动态调整从而适应不同视频监控场景的需求。在训练时,设计模态分离损失增加记忆项之间的区分度。在测试时,仅需要记忆项而不需要未来视频帧的参与,从而实现准确的在线检测。在两个公开的弱监督视频异常检测数据集上的实验结果表明,所提方法优于所有在线应用的方法,相比只能离线应用的方法也具有很强的竞争力。 相似文献
2.
周炫余;吴莲华;郑勤华;肖天星;王紫璇;张思敏 《计算机工程》2024,50(7):87-95
面向全国的学生综合评价与发展平台采集了百万级学生跳绳运动数据用于中小学生身体素质测评,然而在采集的跳绳视频中存在着非跳绳视频、人物未全身出镜等不符合拍摄要求的各类异常视频,严重影响了后续学生身体素质测评模型的准确性和鲁棒性。针对上述问题,提出一种联合语义提示和记忆增强的弱监督跳绳视频异常检测方法。该方法首先提取正常跳绳视频和异常跳绳视频的视觉特征,将正常特征和异常特征成对训练,增强模型对异常视频特征的感知能力;其次设计两个自监督记忆网络分别存储和分离正常视频和异常视频的特征,进一步增强模型的特征表达能力;最后引入提示学习方法迁移大规模预训练模型中的多种跳绳异常类型的语义先验知识,增强模型在样本不足的情况下对多种异常类型语义信息的理解。实验结果表明,该方法在自建的跳绳异常检测数据集(SRAD)上的AUC为94.14%,相较于基准方法提升了2.71个百分点,具有较高的准确性。该方法对实现身体素质的智能测评、推动教育评价改革具有重要意义。 相似文献
3.
传统属性网络的异常检测多基于自监督对比学习,存在着异常节点类型较少、对比学习角度单一等不足。基于“节点-节点”对比和“节点-子图”对比,提出了一种多角度对比学习属性网络异常检测的ADMC(anomaly detection on attribute network by multi-angle contrastive learning)模型。主要创新工作有:在原有结构和属性异常的基础上,进一步细化为四种节点异常类型,并在属性网络中对其进行量化测度;利用“节点-节点”的节点级对比获得二重联接信息,利用“节点-子图”的跨节点级对比获得局部连接信息,并构建了二者互为补充的多角度对比学习模型。基于社交媒体及引文文献等数据集,与基于自监督对比学习(CoLA)模型相比较的实验结果表明,ADMC模型能够丰富异常数据的类型,提升属性网络异常检测的精确性。 相似文献
4.
为了获得更为精准的网络数据流异常检测结果,提升检测效率,减小多因素影响造成的检测误差偏大问题,引入深度长短记忆网络对数据流异常检测参量进行结构优化,优化可分为网络数据流异常特征属性检测量定义、异常数据属性特征提取、深度长短记忆网络下的异常数据特征预处理、建立数据异常检测模型四个部分。通过从异常特征属性定义入手,全方位量化、构建全新深度长短记忆网络下的数据流异常检测模型,以此获得更为精准的检测结果。通过数据对比证实,基于深度长短记忆网络的网络数据流异常检测方法针对一般情况下的异常数据检测灵敏度较高,检测误差低,检测结果可信度和准确率高,检测耗时短,实际应用效果好。 相似文献
5.
异常行为检测是智能监控系统中重要的功能之一, 在保障社会治安等方面发挥着积极的作用. 为提高监控视频中异常行为的检测率, 从学习正常行为分布的角度出发, 设计基于概率记忆模型的半监督异常行为检测网络, 解决正常行为数据与异常行为数据极度不均衡的问题. 该网络以自编码网络为主干网络, 利用预测的未来帧与真实帧之间的差距来衡量异常程度. 在主干网络提取时空特征时, 使用因果三维卷积和时间维度共享全连接层来避免未来信息的泄露, 保证信息的时序性. 在辅助模块方面, 从概率熵和正常行为数据模式多样性的角度, 设计概率模型和记忆模块提高主干网络视频帧重建质量. 概率模型利用自回归过程拟合输入数据分布, 促使模型收敛于正常分布的低熵状态; 记忆模块存储历史数据中的正常行为的原型特征, 实现多模式数据的共存, 同时避免主干网络的过度参与而造成对异常帧的重建. 最后, 利用公开数据集进行消融实验和与经典算法的对比实验, 以验证所提算法的有效性. 相似文献
6.
7.
针对监控视频异常的复杂多样性和短时持续性,引入弱监督视频异常检测方法,旨在仅使用视频级别的标签进行异常检测,并提出了基于变分自编码器(VAE)与长短期记忆(LSTM)网络的异常回归网络VLARNet作为异常检测框架,以捕获时序数据中的时间依赖关系、去除冗余信息,保留数据的关键信息。该框架将异常检测视为回归问题,为学习检测特征,设计了异常分数回归的三元中心损失(TCLASR),与动态多实例学习损失(DMIL)相结合以进一步提高特征的区分能力。DMIL能够扩大异常实例与正常实例之间的类间距离,但同时也扩大了类内距离,而TCLASR可使来自同类的实例与类中心的距离更接近,与不同类中心的距离更远。对VLARNet在ShanghaiTech与CUHK Avenue数据集上进行了综合实验。实验结果表明,VLARNet能够有效利用视频数据的各种信息,在两个数据集上获得的受试者工作特征曲线下面积(AUC)分别为94.64%和93.00%,明显优于对比算法。 相似文献
8.
传统的火灾检测方法大多基于目标检测技术, 存在火灾样本获取难度高、人工标注成本高的问题. 为解决该问题, 本研究提出了一种基于对比学习和伪异常合成的无监督火灾检测模型. 为了实现无监督图像特征学习, 提出了交叉输入对比学习模块. 然后, 引入了一个记忆原型学习正常场景图像的特征分布, 通过特征重建实现对火灾场景的判别. 并且, 提出了伪异常火灾场景合成方法和基于欧氏距离的异常特征区分损失, 使模型对于火灾场景具有针对性. 根据实验表明, 我们的方法在Fire-Flame-Dataset和Fire-Detection-Image-Dataset两个公开火灾检测数据集上的图像级AUC分别达到89.86%和89.56%, 优于PatchCore、PANDA、Mean-Shift等主流图像异常检测算法. 相似文献
9.
深度自编码器可以通过预测当前帧来判断视频中的异常情况。但由于自动编码器对图片的低层次特征无法良好的预测,在自动编码器中添加跳跃连接可以提高预测图片细节信息的能力。由于自动编码器有很好的“泛化”能力,为了抑制对异常事件的准确预测,通过在编码器和解码器的跳跃连接之间添加记忆增强模块限制模型对异常帧的准确预测。同时,为了突出异常帧中的事件,在预测视频帧的同时通过背景提取模块获取当前图片的背景信息用于后续预测误差的计算。在UCSD Ped2数据集、CUHK Avenue数据集和ShanghaiTech数据集上的实验结果表明,改进后模型的异常检测能力得到了提升。 相似文献
10.
针对目前流数据存在数量巨大、生成迅速和概念漂移的特点,提出了一种基于长短期记忆(LSTM)网络和滑动窗口的流数据异常检测方法。首先采用LSTM网络进行数据预测,之后计算预测值与实际值的差值。对于每个数据,选择合适的滑动窗口,将滑动窗口区间内的所有差值进行分布建模,再根据每个差值在当前分布的概率密度来计算数据异常可能性。LSTM网络不仅可以进行数据预测,还可以边预测边学习,实时更新调整网络,保证模型的有效性;而利用滑动窗口可以使得异常分数的分配更为合理。最后使用在真实数据基础上制造的模拟数据进行了实验。实验结果验证了所提方法在低噪声环境下比直接利用差值进行检测和异常数据分布建模法(ADM)方法的平均曲线下面积(AUC)值分别提高了0.187和0.05。 相似文献
11.
生成对抗网络是近年来解决视频异常检测的一类新方法。传统对抗网络对异常样本预测的泛化能力过强,进而导致预测性能不稳定。针对这一问题,提出一种基于记忆对抗网络的监控视频异常检测方法。首先,将记忆模块引入基于U-Net的预测网络与判别网络的对抗学习框架中,构建记忆对抗网络,以提升模型对正常视频帧的预测能力;其次,为记忆对抗网络设计了基于特征紧致度与分离度的新损失函数,提升了训练过程收敛的可靠性;此外,提出了基于记忆损失的异常性评估方案,以提升异常检测的准确性。通过对未来帧与预测帧的PSNR值和视频帧特征与记忆特征间距离的融合,进一步提升了模型的异常检测效果。消融实验验证了各改进部分的有效性;同其他算法相比,所提方法表现出良好的竞争力。 相似文献
12.
13.
代劲;王银宗 《小型微型计算机系统》2024,(6):1301-1310
深度自编码器是异常检测的重要工具,通过异常样本由于分布的差异,无法在编码器中进行重构这一假设实现对异常的检测.而实际应用中,由于深度自编码器的泛化性较强,异常输入后也能实现较好重构,导致漏检情况发生.本文在改进注意力机制基础上,构建了一个散列记忆网络增强的自编码器异常检测方法,较好解决了这一问题.首先,模型将输入编码为编码信息,根据编码信息获取子查询向量,然后通过子查询向量获取子注意力权重及对应子索引,再将子权重交叉求和获得散列权重及索引并从记忆网络单元检索出解码信息,最后利用解码信息进行重构输出.重构的输出总是与正常数据相似,使得异常输入与重构输出之间的重构误差将被放大,从而让异常更容易被识别.仿真实验表明,本文提出方法在图像、视频监控、通用异常检测任务中,均取得了较好的检测效果. 相似文献
14.
网络流量数据的获取较为容易,而对流量数据进行标记相对困难。半监督学习利用少量有标签数据和大量无标签数据进行训练,减少了对有标签数据的需求,能较好适应海量网络流量数据下的异常检测。文章对近年来的半监督网络异常检测领域的论文进行深入调研。首先,介绍了一些基本概念,并深入剖析了网络异常检测中使用半监督学习策略的必要性;然后,从半监督机器学习、半监督深度学习和半监督学习结合其他范式三个方面,分析和比较了半监督网络异常检测领域近年来的论文,并进行归纳和总结;最后,对当前半监督网络异常检测领域进行了现状分析和未来展望。 相似文献
15.
异常驾驶行为的识别对交通安全起着至关重要的作用,准确识别异常驾驶行为能够显著提高驾驶安全。目前,针对车辆行驶过程中的异常驾驶行为,如急加速、急减速、突然左转或右转等的检测识别,主要采用视频监控或聚类的方法完成。在这两种方法中,前者的实际效果受到应用场景的制约,而后者则不能针对具体的单个车辆进行驾驶行为识别。针对以上问题,使用一种基于双向长短记忆网络(Bi-LSTM)及全连接神经网络(FC)的拓展神经网络检测模型,该模型能有效利用行车数据在时间序列上发生突变时的特征,提高异常驾驶行识别准确率。将车辆行车数据处理后制作数据集并对模型进行训练,训练完成后的神经网络模型能够有效利用行车数据的时间序列特征,准确识别车辆的异常驾驶行为,准确率可达到98.08%。 相似文献
16.
由于日志解析准确率不高以及标记样本不足降低了异常检测的准确率,所以提出了一种新的基于日志的半监督异常检测方法。首先,通过改进字典的日志解析方法,保留了日志事件中的部分参数信息,从而提高日志信息的利用率和日志解析的准确率;然后,使用BERT对模板中的语义信息进行编码,获得日志的语义向量;接着采用聚类的方法进行标签估计,缓解了数据标注不足的问题,有效提高了模型对不稳定数据的检测;最后,使用带有残差块的双向时间卷积网络(Bi-TCN)从两个方向捕获上下文信息,提高了异常检测的精度和效率。为了评估该方法的性能,在两个数据集上进行了评估,最终实验结果表明,该方法与最新的三个基准模型LogBERT、PLELog和LogEncoder相比,F1值平均提高了7%、14.1%和8.04%,能够高效精准地进行日志解析和日志异常检测。 相似文献
17.
针对物联网场景下,传统异常检测方法在海量不均衡数据中检测准确率低、数据异构导致模型泛化能力差等问题,提出了基于联邦学习的对抗双编码异常检测网络 (GB-AEnet-FL)的物联网设备异常检测算法。首先,提出了一种基于异常数据的主动特征分布学习算法,主动学习数据的潜在特征分布,通过数据重构扩充异常数据,均衡正负样本比例。其次,在潜在特征层引入了对抗训练机制并添加一致性增强约束和收缩约束,提高特征提取的精度。最后,设计了一种基于动态模型选择的联邦学习算法,比较局部模型与全局模型的置信度评分,动态选择部分联邦体参与,加速模型的聚合,在一定程度上也保护了用户隐私。在四个不同数据集上进行验证,结果显示,所提算法在检测准确度优于传统算法,且泛化能力得到相应提升。 相似文献
18.
由于缺少精确的边界框注释,弱监督目标检测器依赖预训练图像分类模型对候选区域进行分类.然而,预训练模型通常对具有鉴别性的区域而非完整的目标产生高响应,导致局部主导、实例丢失和非紧密框等问题.为此,文中提出基于多层次融合的弱监督目标检测网络,从增强对弱鉴别性空间特征的学习、类内样本特征丰富性和可信伪标签权重的角度提升检测性能.首先,幂池化层利用幂函数加权融合邻域内的激活值,减少弱鉴别性特征的信息损失.其次,特征混合方法随机融合候选区域的特征向量,丰富训练样本特征的多样性.最后,基于置信度的样本重加权策略融合预测值和伪标签的置信度,调节伪标签对训练的影响.在3个基准数据集上的实验表明文中网络性能较优. 相似文献
19.
日志能记录系统运行时的具体状态,而自动化的日志异常检测对网络安全至关重要.针对日志语句随时间演变导致异常检测准确率低的问题,提出一种无监督日志异常检测模型LogCL.首先,通过日志解析技术将半结构化的日志数据转换为结构化的日志模板;其次,使用会话和固定窗口将日志事件划分为日志序列;再次,提取日志序列的数量特征,使用自然语言处理技术对日志模板进行语义特征提取,并利用词频-词语逆频率(TF-IWF)算法生成加权的句嵌入向量;最后,将特征向量输入一个并列的基于卷积神经网络(CNN)和双向长短期记忆(Bi-LSTM)网络的模型中进行检测.在两个公开的真实数据集上的实验结果表明,所提模型较基准模型LogAnomaly在异常检测的F1-score上分别提高了3.6和2.3个百分点.因此LogCL能够对日志数据进行有效的异常检测. 相似文献
20.
陈解元 《信息技术与网络安全》2021,(7):42-46
针对传统机器学习方法依赖人工特征提取,存在检测算法准确率低、无法应对0day漏洞利用等未知类型攻击等问题,提出一种基于卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆网络(Long-Short Term Memory,LSTM)混合算法的异常流量检测方法,充分发掘攻击流量的... 相似文献