首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
基于k最相似聚类的子空间聚类算法   总被引:1,自引:2,他引:1       下载免费PDF全文
子空间聚类是聚类研究领域的一个重要分支和研究热点,用于解决高维聚类分析面临的数据稀疏问题。提出一种基于k最相似聚类的子空间聚类算法。该算法使用一种聚类间相似度度量方法保留k最相似聚类,在不同子空间上采用不同局部密度阈值,通过k最相似聚类确定子空间搜索方向。将处理的数据类型扩展到连续型和分类型,可以有效处理高维数据聚类问题。实验结果证明,与CLIQUE和SUBCLU相比,该算法具有更好的聚类效果。  相似文献   

3.
基于子空间维度加权的密度聚类算法   总被引:2,自引:0,他引:2  
在高维数据聚类中,受维度效应的影响,现有的算法聚类效果不佳。为此,提出一种适用于高维数据的密度聚类算法StaDeCon。在经典的PreDeCon算法基础上,引入子空间维度权重的计算方法,避免PreDeCon算法使用全空间距离度量带来的问题,提高了聚类的质量。在合成数据和实际应用数据集上的实验结果表明,该算法在高维数据聚类上可取得较好的聚类精度,算法是有效可行的。  相似文献   

4.
高维数据聚类是聚类技术的难点和重点,子空间聚类是实现高维数据集聚类的有效途径,它是在高维数据空间中对传统聚类算法的一种扩展,其思想是将搜索局部化在相关维中进行.该文从不同的搜索策略即自顶向下策略和自底向上策略两个方面对子空间聚类算法的思想进行了介绍,对近几年提出的子空间聚类算法作了综述,从算法所需参数、算法对参数的敏感度、算法的可伸缩性以及算法发现聚类的形状等多个方面对典型的子空间聚类算法进行了比较分析,对子空间聚类算法面临的挑战和未来的发展趋势进行了讨论.  相似文献   

5.
自适应熵的投影聚类算法   总被引:1,自引:0,他引:1  
受“维度效应”的影响,许多传统聚类方法运用于高维数据时往往聚类效果不佳。近年来投影聚类方法获得广泛关注,其中软子空间聚类法更是得到了广泛的研究和应用。然而,现有的投影子空间聚类算法大多数均要求用户预先设置一些重要参数,且未能考虑簇类投影子空间的优化问题,从而降低了算法的聚类性能。为此,定义了一种新的优化目标函数,在最小化簇内紧凑度的同时,优化每个簇所在的子空间。通过数学推导得到了新的特征权重计算方法,并提出了一种自适应的“均值型投影聚类算法。该算法在聚类过程中,依靠数据集自身的相关信息及推导获得的公式动态地计算各优化参数。实验结果表明,新算法通过对投影子空间的优化改善了聚类质量,其性能较已有投影聚类算法有了明显提升。  相似文献   

6.
高维数据流的自适应子空间聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
高维数据流聚类是数据挖掘领域中的研究热点。由于数据流具有数据量大、快速变化、高维性等特点,许多聚类算法不能取得较好的聚类质量。提出了高维数据流的自适应子空间聚类算法SAStream。该算法改进了HPStream中的微簇结构并定义了候选簇,只在相应的子空间内计算新来数据点到候选簇质心的距离,减少了聚类时被检查微簇的数目,将形成的微簇存储在金字塔时间框架中,使用时间衰减函数删除过期的微簇;当数据流量大时,根据监测的系统资源使用情况自动调整界限半径和簇选择因子,从而调节聚类的粒度。实验结果表明,该算法具有良好的聚类质量和快速的数据处理能力。  相似文献   

7.
刘怀北 《福建电脑》2009,25(10):94-95
本文通过分析现有入侵检测技术所存在的不足,探讨了基于子空间聚类的入侵检测技术的优势,并提出一种基于子空间聚类的入侵检测方法。该方法通过将网络数据进行子空间聚类分为正常类与异常类,从而检测入侵记录。文中详细的阐述了具体实现方案,并通过仿真实验验证了该方法的可行性。  相似文献   

8.
自适应的软子空间聚类算法   总被引:6,自引:0,他引:6  
陈黎飞  郭躬德  姜青山 《软件学报》2010,21(10):2513-2523
软子空间聚类是高维数据分析的一种重要手段.现有算法通常需要用户事先设置一些全局的关键参数,且没有考虑子空间的优化.提出了一个新的软子空间聚类优化目标函数,在最小化子空间簇类的簇内紧凑度的同时,最大化每个簇类所在的投影子空间.通过推导得到一种新的局部特征加权方式,以此为基础提出一种自适应的k-means型软子空间聚类算法.该算法在聚类过程中根据数据集及其划分的信息,动态地计算最优的算法参数.在实际应用和合成数据集上的实验结果表明,该算法大幅度提高了聚类精度和聚类结果的稳定性.  相似文献   

9.
基于差分演化算法的软子空间聚类   总被引:3,自引:0,他引:3  
软子空间聚类算法的性能主要取决于其目标函数和搜索策略.文中提出了一种基于差分演化算法的软子空间聚类算法DESC.首先,设计了一个结合模糊加权类内相似性和界约束权值矩阵的新目标函数.然后,提出了新的隶属度计算方法.最后,引入了一种有效的全局搜索算法——复合差分演化算法,并运用该算法优化新目标函数和搜索子空间中的聚类.实验表明,新目标函数和复合差分演化算法的引入有效地提高了软子空间聚类算法的性能,新算法较已有软子空间聚类算法有明显优势.  相似文献   

10.
子空间聚类是高维数据聚类的一种有效手段,子空间聚类的原理就是在最大限度地保留原始数据信息的同时用尽可能小的子空间对数据聚类。在研究了现有的子空间聚类的基础上,引入了一种新的子空间的搜索方式,它结合簇类大小和信息熵计算子空间维的权重,进一步用子空间的特征向量计算簇类的相似度。该算法采用类似层次聚类中凝聚层次聚类的思想进行聚类,克服了单用信息熵或传统相似度的缺点。通过在Zoo、Votes、Soybean三个典型分类型数据集上进行测试发现:与其他算法相比,该算法不仅提高了聚类精度,而且具有很高的稳定性。  相似文献   

11.
针对软子空间聚类过程中簇间距离(簇间的分离程度)对聚类的影响程度不确定的问题,提出了一种基于簇内紧密度和簇间距离自适应软子空间聚类算法。算法以经典的k均值聚类算法框架为基础,在最小化各个子空间簇类的簇内紧密度的同时最大化各个子空间簇类的簇间距离。并且通过推导得到新的子空间聚类中心和特征加权的计算方式,克服了软子空间聚类对输入参数敏感的缺点,实现了算法的自适应学习,并且取得了较好的聚类效果。  相似文献   

12.
刘竞杰  陶亮 《计算机工程与应用》2012,48(12):139-143,182
结合传统的Parzen窗方法并引入一种更加合理的历史数据丢弃策略,在此基础上,通过计算可以得到整个数据集在低维空间投影的信息熵,利用信息熵实现了一种适用于高维数据流的子空间聚类算法(PStream)。理论及实验均表明,与传统的算法相比,该算法可以在一次遍历的前提下,完成对数据流的高精度聚类,虽然其运行效率与现有的方法(如HPStream)相比差别不大,但是却明显地改善了聚类效果。  相似文献   

13.
针对高维数据聚类的问题,许多有效的方法已经被提出,级联的子空间聚类算法CSC就是一种有效的解决法案。但是CSC算法定义的聚类损失可能破坏特征空间,从而取得非代表性的无意义特征,进而损害聚类性能。为了解决这一问题,提出了一种结合自编码器保留数据结构的改进算法。具体地说,使用聚类损失作为引导,分散特征空间数据点,同时采用一种欠完备的自动编码器作为重构损失,约束操作和维护数据生成分布的局部结构。将两者结合,共同优化聚类标签的分配,学习适合聚类的局部结构保留特征。使用自适应矩估计(Adam)和小批量随机梯度下降(mini-batch SGD)两种优化方法调整模型参数。在多个数据集上,使用聚类结果准确率(Acc)、标准互信息(NMI)和调整Rand指数(ARI)三个评价指标验证了该算法的有效性和优越性。  相似文献   

14.
SUBCLU高维子空间聚类算法在自底向上搜索最大兴趣子空间类的过程中不断迭代产生中间类,这些中间类的产生消耗了大量时间,针对这一问题,提出改进算法BDFS-SUBCLU,采用一种带回溯的深度优先搜索策略来挖掘最大兴趣子空间中的类,通过这种策略避免了中间类的产生,降低了算法的时间复杂度。同时BDFS-SUBCLU算法在子空间中对核心点增加一种约束,通过这个约束条件在一定程度上避免了聚类过程中相邻的类由于特殊的数据点合为一类的情况。在仿真数据集和真实数据集上的实验结果表明BDFS-SUBCLU算法与SUBCLU算法相比,效率和准确性均有所提高。  相似文献   

15.
块对角表示(BDR)模型可以通过利用线性表示对数据有效地进行聚类,却无法很好地利用高维数据常见的非线性流形结构信息。针对这一问题,提出了基于近邻图改进的块对角子空间聚类(BDRNG)算法来通过近邻图来线性拟合高维数据的局部几何结构,并通过块对角约束来生成具有全局信息的块对角结构。BDRNG同时学习全局信息以及局部数据结构,从而获得更好的聚类表现。由于模型包含近邻图算子和非凸的块对角表示范数,BDRNG 采用了交替最小化来优化求解算法。实验结果如下:在噪声数据集上,BDRNG能够生成稳定的块对角结构系数矩阵,这说明了BDRNG对于噪声数据具有鲁棒性;在标准数据集上,BDRNG的聚类表现均优于BDR,尤其在人脸数据集上,相较于BDR,BDRNG的聚类准确度提高了8%。  相似文献   

16.
程铃钫  杨天鹏  陈黎飞 《计算机应用》2017,37(10):2952-2957
针对受均匀效应的影响,当前K-means型软子空间算法不能有效聚类不平衡数据的问题,提出一种基于划分的不平衡数据软子空间聚类新算法。首先,提出一种双加权方法,在赋予每个属性一个特征权重的同时,赋予每个簇反映其重要性的一个簇类权重;其次,提出一种混合型数据的新距离度量,以平衡不同类型属性及具有不同符号数目的类属型属性间的差异;第三,定义了基于双加权方法的不平衡数据子空间聚类目标优化函数,给出了优化簇类权重和特征权重的表达式。在实际应用数据集上进行了系列实验,结果表明,新算法使用的双权重方法能够为不平衡数据中的簇类学习更准确的软子空间;与现有的K-means型软子空间算法相比,所提算法提高了不平衡数据的聚类精度,在其中的生物信息学数据上可以取得近50%的提升幅度。  相似文献   

17.
在处理高维数据时,聚类的工作往往归结为对子空间的划分问题。大量的真实实验数据表明,相同的属性对于高维数据的每一类子空间而言并不是同等重要的,因此,在FCM算法的基础上引入了方差权重矩阵模型,创造出了新的聚类算法称之为WM-FCM。该算法通过不断地聚类迭代调整权重值,使得其重要的属性在各个子空间内更为显著地表征出来,从而达到更好的聚类效果。从基于模拟数据集以及UCI数据集的实验结果表明,该改进的算法是有效的。  相似文献   

18.
高冉  陈花竹 《计算机应用》2021,41(12):3645-3651
子空间聚类的目的是将来自不同子空间的数据分割到其本质上所属的低维子空间。现有的基于数据的自我表示和谱聚类的子空间聚类算法将该问题分为两个连续的阶段:首先从高维数据中学习数据的相似性矩阵,然后通过将谱聚类应用于所学相似性矩阵来推断数据的聚类隶属。通过定义一种新的数据自适应稀疏正则项,并将其与结构稀疏子空间聚类(SSSC)模型和改进的稀疏谱聚类(SSpeC)模型相结合,给出了一个新的统一优化模型。新模型利用数据的相似度和聚类指标的相互引导克服了SSpeC稀疏性惩罚的盲目性,并使得相似度具有了判别性,这有利于将不同子空间的数据分为不同类,弥补了SSSC模型只强制来自相同子空间的数据具有相同标签的缺陷。常用数据集上的实验结果表明,所提模型增强了聚类判别的能力,优于一些经典的两阶段法和SSSC模型。  相似文献   

19.
高维数据聚类方法综述*   总被引:10,自引:2,他引:10  
总结了高维数据聚类算法的研究现状,分析比较了算法性能的主要差异,并指出其今后的发展趋势,即在子空间聚类过程中融入其他传统聚类方法的思想,以提高聚类性能。  相似文献   

20.
Clustering high dimensional data has become a challenge in data mining due to the curse of dimensionality. To solve this problem, subspace clustering has been defined as an extension of traditional clustering that seeks to find clusters in subspaces spanned by different combinations of dimensions within a dataset. This paper presents a new subspace clustering algorithm that calculates the local feature weights automatically in an EM-based clustering process. In the algorithm, the features are locally weighted by using a new unsupervised weighting method, as a means to minimize a proposed clustering criterion that takes into account both the average intra-clusters compactness and the average inter-clusters separation for subspace clustering. For the purposes of capturing accurate subspace information, an additional outlier detection process is presented to identify the possible local outliers of subspace clusters, and is embedded between the E-step and M-step of the algorithm. The method has been evaluated in clustering real-world gene expression data and high dimensional artificial data with outliers, and the experimental results have shown its effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号