首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CVD金刚石形核的研究   总被引:1,自引:0,他引:1  
在钢渗铬层和硅片上进行了化学气相沉积金刚石膜,发现在渗铬层上形成的金刚石膜以球形金刚石为主;用高倍扫描电子显微镜分析显示,渗铬层上的球形金刚石是由大量二次晶核长大的微晶金刚石和非晶碳组成.  相似文献   

2.
CVD金刚石形核的研究   总被引:2,自引:0,他引:2  
在钢渗铬层和硅片上进行了化学气相沉积金刚石膜,发现在渗铬层上形成的金刚石膜以球形金刚石为主;用高倍扫描电子显微镜分析显示,渗铬层上的球形金刚石是由大量二次晶核长大的微晶金刚石和非晶碳组成。  相似文献   

3.
CVD金刚石薄膜二次形核机制的研究   总被引:9,自引:1,他引:8  
根据实验观察分析提出了金刚石二次形核机制,此机制认为二次形核很容易在(100)晶面上和晶界上形成,通过比较(100)面的二次形核和形成新生长台阶的系统自由能差,可知当气氛中的碳氢基团浓度较大时,粘附在基底的碳氢基团发生堆集,如果堆集碳氢基团高度尺寸较大时将形成二次晶核,也对晶界二次形核的系统自由能差进行了,结果表明晶界二次形核是自发的,将导致体系自由能的下降。  相似文献   

4.
利用热丝化学气相沉积法 (HF CVD)进行了金刚石薄膜制备和碳纳米管形核作用的研究。获得了制备金刚石薄膜的优化工艺参数。利用碳纳米管作为形核前驱获得了高质量的金刚石薄膜 ,其沉积速率可达 2 5 μm/h ,晶粒生长完美 ,而且没有出现聚晶现象。研究了碳纳米管涂料质量对薄膜沉积特性的影响 ,并对其机理进行了初步探讨  相似文献   

5.
热丝CVD金刚石薄膜制备及碳纳米管形核作用的研究   总被引:5,自引:0,他引:5  
利用热丝化学气相沉积法(HF-CVD)进行了金刚石薄膜制备和碳纳米管形核作用的研究。获得了制备金刚石薄膜的优化工艺参数。利用碳纳米管作为形核前驱获得了高质量的金刚石薄膜,其沉积速率可达2.5μm/h,晶粒生长完善,而且没有出现聚晶现象。研究了碳纳米管涂料质量对薄膜沉积特性的影响,并对其机理进行了初步探讨。  相似文献   

6.
简要介绍了金刚石膜的物理化学特性及应用领域。对比分析了主要化学气相沉积方法的优缺点,并指出MPCVD所面临的技术瓶颈。总结了反应腔体内压强、基片温度、基体材料及增强形核技术对金刚石膜形核过程的影响。较低腔体内压力、基片温度,高碳源浓度及等离子体预处理能有效提高形核密度。阐述了各过程参数对金刚石膜生长的影响和微米、纳米、超纳米金刚石膜的技术特点及应用。指出各类金刚石膜制备所面临的技术难题,并综述了解决该技术瓶颈的最新研究工作。  相似文献   

7.
在微波等离子体化学气相沉积装置中 ,采用正交试验法研究金刚石在镜面抛光的Si( 1 0 0 )面上的偏压形核过程中 ,形核时间、偏压电压、气压及甲烷浓度对形核密度的影响 ,研究结果表明 :形核密度随形核时间的增加而增加 ,适中的偏压电压和沉积气压有利于金刚石的形核 ,而甲烷浓度的影响很小。正交试验所得的最佳形核条件为偏压 -1 5 0V ;时间 1 2min ;气压 4kPa;CH4 比率 5 % ,在该条件下金刚石的形核密度达到 1 0 1 0 个 cm2 。  相似文献   

8.
SiNx作为GaN和金刚石异质结构的中间层,不仅是下层GaN材料的保护层,也是上层金刚石的形核生长层,因此SiNx介质薄膜对于GaN表面合成高质量金刚石具有重要的意义。研究分别采用低压化学气相沉积(LPCVD)和磁控溅射(MS)方法在GaN-Si衬底上制备SiNx介质薄膜。利用扫描电镜、傅立叶红光光谱、X射线衍射、激光拉曼等技术对SiNx薄膜的表面形貌、晶体结构和表面官能团等进行分析。结果表明,采用LPCVD镀制的非晶态SiNx介质薄膜经籽晶播种、形核生长金刚石后,金刚石/SiNx/GaN界面完整致密;采用MS制备的SiNx介质薄膜呈晶态特征,对应的界面出现明显的刻蚀坑。沉积方式会影响SiNx薄膜的晶体结构和微观形貌,高致密度的非晶态结构有利于金刚石层快速形核生长,对于构建金刚石基GaN结构更为有利。  相似文献   

9.
直流热阴极CVD金刚石薄膜生长特性研究   总被引:1,自引:0,他引:1  
为了获得高质量的金刚石薄膜,采用直流热阴极化学气相沉积系统分别在不同基片温度和不同碳源气体含量条件下生长金刚石薄膜,利用Raman光谱、SEM和XRD检测方法研究了基片温度和碳源气体含量对金刚石薄膜生长特性的影响.结果表明,金刚石薄膜与基片Mo之间有Mo2C的过渡层存在;1000℃的温度能够促进金刚石晶体的生长,抑制其他碳杂质的形成,CH4体积分数为2%适于快速生长高纯度的金刚石薄膜.  相似文献   

10.
热丝CVD大面积金刚石薄膜的生长动力学研究   总被引:1,自引:0,他引:1  
在传统工业型热丝化学气相沉积(HFCVD)反应腔内,相关工艺参数取模拟计算优化值的条件下,采用XRD,SEM及Raman光谱等分析手段研究了单晶Si(100)上较大面积金刚石薄膜的动力学生长行为,讨论了晶格取向的变化规律。结果表明:优化工艺参数条件下,在模拟计算的衬底温度和气体温度分布均匀的区域内,沉积的金刚石薄膜虽存在一定的内应力,但整体薄膜连续、均匀,几何晶形良好,质量较高,生长速率达1.8μm/h。薄膜生长过程中晶形显露面受衬底温度和活性生长基团浓度的影响较大。  相似文献   

11.
钢渗铬层上金刚石薄膜的表面、界面结构及附着性   总被引:1,自引:0,他引:1  
在钢渗铬层表面用化学气相沉积(CVD))法制备了金刚石薄膜.使用扫描电镜(SEM)、透射电镜(TEM)和压痕法研究了金刚石膜的表面、界面结构及附着力.用拉曼光谱分析了金刚石膜的纯度及非金刚石碳相.甲烷含量超过0.6%(体积分数)后,金刚石膜为球形纳米晶,形核密度>107cm-2.用甲烷含量为0.6%(体积分数)沉积的金刚石膜表面的残余压应力为1.22 Gpa,而膜背面的残余压应力更高,达2.61 Gpa.压痕显示在19.6 N载荷下膜发生开裂.TEM观察发现,膜/基界面为微观非平面,有利于提高金刚石膜的附着力.  相似文献   

12.
金刚石薄膜的性质、制备及应用   总被引:26,自引:9,他引:26  
金刚石有着优异的物理化学性质,化学气相沉积金刚石薄膜的研究受到研究人员和工业界的广泛关注。通过评述金刚石薄膜的性质、制备方法及应用等方面的研究成果,着重阐述化学气相沉积金刚石薄膜技术的基本原理,分析了各种沉积技术的优、缺点。结合对金刚石薄膜应用的讨论,分析了金刚石薄膜在工业应用中存在的问题和制备技术的发展方向。分析结果表明:MWCVD法是高速率、高质量、大面积沉积金刚石薄膜的首选方法;而提高金刚石的生长速度、降低生产成本等是进一步开发刚石薄膜工业化应用所需解决的主要问题。  相似文献   

13.
14.
The evolution of grain size, grain-size distribution, morphological and crystallographic texture, surface roughness, and the contribution of various surface facets to the growth of polycrystalline diamond films is performed by carrying out a series of two-dimensional computer simulations. The films are assumed to grow from a set of randomly oriented, {100}- and {111}-faceted nuclei by the motion of their vertices (the points where the adjoining facets of the same or neighboring grains meet). The vertex velocities are found to be a function of the orientation and the growth rate of the adjoining facets. To quantify the latter, a {100} to {111} growth-rate parameter is used. The results show that the evolution of the grain size and its distribution, surface roughness, morphological and crystallographic texture, and the portion of the film grown from different surface facets are all mutually linked and governed by the magnitude of the growth-rate parameter. The latter can be controlled by the CVD processing conditions, such as the substrate temperature, reactor pressure, mole fraction of carbon-source gas (e.g., CH4, C2H2).  相似文献   

15.
L. Constant 《Thin solid films》2008,516(5):691-695
This paper reports on the kinetics of diamond nucleation and growth on polycrystalline copper investigated by in situ Auger Electron Spectroscopy and Scanning Electron Microscopy. Copper is a reference substrate to study the diamond nucleation from graphite. The substrate is first treated with diamond paste. However the diamond seeds let on the surface by the pre-treatment are almost completely transformed into graphite. The nucleation of CVD diamond can be well described in the framework of carbon phase transformations. Diamond seeds deposited on the substrate are first transformed into graphitic layers. A process occurring on the edges site of graphite is subsequently postulated, in agreement with the Lambrecht model.  相似文献   

16.
对比分析了经金刚石磨盘研磨、脱钴/未脱钴YG8硬质合金上蒸镀非晶碳膜预处理对金刚石形核密度的影响。结果表明,未脱钴者,金刚石的形核密度低,金刚石结晶质量差,颗粒稀少,未成膜。原因是金刚石沉积过程中,基体内部的钴会扩散或蒸发到表面,产生明显聚集和长大。而经脱钴处理者,成核密度可达10^8cm^-2,颗粒尺寸1~2μm,金刚石结晶质量好,刻面廓分明,表面基本成膜。  相似文献   

17.
In order to investigate the effects of argon and oxygen on diamond synthesis, the behaviors of diamond deposition using microwave plasma chemical vapor deposition method have been studied by varying the concentrations of argon and oxygen in the methane-hydrogen gas mixture. Diamond films were deposited on silicon wafer under the conditions of substrate temperatures: 1073 1173 K, total reaction pressure: 5333 Pa (40 Torr), methane concentrations: 0.5 5.0%, and they were characterized by scanning electron microscopy, Raman spectroscopy and optical emission spectroscopy. The deposition rates of diamond films were enhanced by adding argon into the methane-hydrogen system, but nondiamond carbon phases in the films also increased. It resulted from the increase of hydrocarbon radicals in the plasma. As oxygen was added, the quality of deposited diamond films was improved due to the decrease of C2 radicals and increase of OH radicals in the plasma. Simultaneous addition of 0.3% oxygen and 20% argon has been able to effectively suppress the formation of nondiamond carbon components and increase the deposition rate of diamond films. It appears that the ionized argon (Ar+) and excited argon atoms (Ar*) may activate the various chemical species and promote the reactions between the gas phase species and oxygen in the plasma.  相似文献   

18.
为了研究基片的表面状态对金刚石成核密度的影响,采用了抛光清洁的基片、对样品划痕、基片加热脱附等不同的表面处理方法,对样品表面进行预处理,得到了不同表面处理条件下的金刚石成核密度。尝试了在低真空(10-1Pa量级)条件下,去除表面的氧化硅及吸附活性的含碳原子,以提高金刚石的成被密度,得到了较理想的结果,成核密度为109/cm2。  相似文献   

19.
The effect of fluidized bed (FB) treatment upon hot filament chemical vapor deposition (HFCVD) of polycrystalline diamond films onto WC-Co hardmetal substrates was investigated. Several scenarios to make the substrates ready for HFCVD were, comparatively, evaluated and the resulting diamond films were examined in terms of their morphology and adhesion. The diamond grain density was measured by scanning electron microscopy. The adhesion of continuous diamond film to substrate was evaluated by the reciprocal of the slope of crack radius-indentation load functions. Surface binder dissolution followed by FB treatment (PF pretreatment) allowed very high diamond nucleation density and smaller grain size. The adhesion of films grown on PF pretreated substrates was found to be very close to that of films deposited on hardmetal slabs pretreated by Murakami's reagent followed by Co etching with Caro's acid and seeded with diamond suspension in an ultrasonic vessel (MPS pretreatment). However, diamond coatings on MPS pretreated samples exhibited a rougher surface morphology as a result of both lower diamond nucleation density and larger substrate surface roughening by Murakami's etching. Based upon experimental findings, our newly developed PF pretreatment was found to be a very promising technique in substrates conditioning as well as in promoting adherent, uniform and smooth diamond coatings onto hardmetal tools and wear parts.  相似文献   

20.
根据理论计算得到了碳氢氮体系低压金刚石生长非平衡定态相图,结果与实验数据相当符合,并通过相图和热力学计算讨论了氮原子含量对金刚石生长条件的影响以及在CVD金刚石制备过程中提高金刚石薄膜生长速率的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号