首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to characterize microbial biofilms from 'gerles' (wooden vats for making PDO Salers cheese) and identify their role in milk inoculation and in preventing pathogen development. Gerles from ten farms producing PDO Salers cheese were subjected to microbial analysis during at least 4 periods spread over two years. They were distinguished by their levels of Lactobacillus (between 4.50 and 6.01 log CFU/cm(2)), Gram negative bacteria (between 1.45 and 4.56 log CFU/cm(2)), yeasts (between 2.91 and 5.57 log CFU/cm(2)), and moulds (between 1.72 and 4.52 log CFU/cm(2)). They were then classed into 4 groups according their microbial characteristics. These 4 groups were characterized by different milk inoculations (with either sour whey or starter culture, daily or not), and different washing procedures (with water or whey from cheese making). The farm gerles were not contaminated by Salmonella, Listeria monocytogenes or Staphylococcus aureus. Only one slight, punctual contamination was found on one gerle among the ten studied. Even when the milk was deliberately contaminated with L. monocytogenes and S. aureus in the 40 L experimental gerles, these pathogens were found neither on the gerle surfaces nor in the cheeses. Using 40 L experimental gerles it was shown that the microbial biofilms on the gerle surfaces formed in less than one week and then remained stable. They were mainly composed of a great diversity of lactic acid bacteria (Leuconostoc pseudomesenteroides, Lactococcus lactis, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus hilgardii,…), Gram positive catalase positive bacteria (Curtobacterium flaccumfaciens, Curtobacterium oceanosedimentum Citrococcus spp., Brachybacterium rhamnosum, Kocuria rhizophila, Arthrobacter spp.…) and yeast (Kluyveromyces lactis, Kluyveromyces marxianus). In less than 1 min, even in a 500 L farm gerle, the gerle's microbial biofilm can inoculate pasteurized milk with micro-organisms at levels superior to those in raw milk.  相似文献   

2.
Two hundred samples of minimally processed, frozen, and prepacked potato chips, peas, corn, and a variety of combined vegetables from supermarkets in Gaborone, Botswana, were examined microbiologically. Determination of aerobic mesophilic plate count, aerobic psychrotrophic plate count, lactic acid bacteria, yeasts and molds, coliforms, Listeria spp., and Staphylococcus aureus were done. Chips had the lowest mean log values for all of the microorganisms enumerated except yeasts and molds. The mean log values for single vegetables ranged from 3.6 to 9.1, 3.4 to 8.9, 2.9 to 5.6, and 2.1 to 6.5 log CFU/ g aerobic mesophilic plate count, aerobic psychrotrophic plate count, lactic acid bacteria, and yeasts and molds, respectively. The microbial profiles of peas and corn were almost similar (P < 0.001). The mean values for combined vegetables were clustered within 4.6 and 5.4 and 4.2 and 5.2 log CFU/g aerobic mesophilic plate count and aerobic psychrotrophic plate count, respectively. All of the vegetables had a coliform population distribution ranging from 0 to < 10(4) most probable number per g. The predominant gram-negative bacteria isolated included members of Enterobacteriaceae and Pseudomonaceae (86.2%). Escherichia coli was not detected in all of the samples. The organisms isolated included those responsible for spoilage in frozen vegetables, namely Pseudomonas, Klebsiella, Corynebacterium, lactic acid bacteria, and Flavobacterium. The predominant lactic acid bacteria were Lactobacillus spp. (55.9%). Other spoilage organisms were yeasts, and Cryptococcus spp. (55.4%) was predominant. Pathogens, namely Listeria monocytogenes, were also isolated at a rate of 2 to 10%, of which 4% was from corn, 2% each from peas and country crop, and 10% from stir-fry. Bacillus cereus was also isolated and accounted for 7.7% of the microorganisms from corn. S. aureus was isolated from all of the vegetables. Enterotoxigenic strains were from corn, peas, mixed vegetables, and stir-fry, and all of them produced enterotoxin A. In addition, the isolates from stir-fry vegetables also produced enterotoxins B and C. The study reveals the presence of pathogens and emerging opportunistic pathogens in the ready-to-use or ready-to-eat vegetables. If E. coli is the only indicator for safety and acceptability, consumers may be exposed to foodborne diseases. Inclusion of other groups as indicator organisms is suggested. Retailers are urged to invest in standby generators to maintain the cold chain.  相似文献   

3.
MICROBIOLOGICAL QUALITY OF CEBRERO CHEESE FROM NORTHWEST SPAIN   总被引:1,自引:0,他引:1  
Cebrero cheese is traditionally manufactured from raw cow's milk in the Cebrero mountains of Galicia (NW Spain). We report determinations of pH and aw, and counts of total aerobic bacteria, psychrotrophs, Enterobacteriaceae, Escherichia coli, coagulase-positive Staphylococcus aureus, Listeria, molds and yeasts, in 49 samples. E. coli count exceeded the level permitted by Spanish legislation in 51% of samples. S. aureus count exceeded the level permitted in 20% of the samples. In one sample, with pH 5.06, two species of Listeria (L. monocytogenes and L. seeligeri) were detected. Although the pH of this cheese is fairly low, it does not appear to be sufficient to prevent the occurrence of certain pathogenic microorganisms.  相似文献   

4.
Changes during production and ripening in the microbial flora of 11 batches of Arzúa, a soft cheese made from raw cow's milk, were investigated. The following microbial groups were counted on the surface and interior of the cheese: total viable count (TVC), lactic acid bacteria (LAB), halotolerant flora, enterococci, proteolytic enterococci, staphylococci, Staphylococcus aureus, Enterobacteriaceae, faecal coliforms, molds, yeasts, Listeria spp. and (in milk) Brucella spp. pH and water activity were also determined. TVC and LAB were, generally, more than 9 log (cfu/g). Enterococci counts increased gradually, reaching values in excess of 6 log units. Halotolerant flora and staphylococci remained practically constant throughout ripening, at 6–8 and 5–7 log units, respectively. Maximum Enterobacteriaceae and faecal coliform counts exceeded 7 and 6 log units, respectively. Brucella spp. were not detected in any of the milk samples. Listeria spp. were detected in four batches, and Listeria monocytogenes in two.  相似文献   

5.
The behavior of Listeria monocytogenes in pasteurized milk during fermentation with starter and nonstarter lactic acid bacteria was investigated. Pasteurized milk was co-inoculated with approximately 10(4) CFU/ml of L. monocytogenes and 10(6) CFU/ml of Lactococcus lactis, Lactococcus cremoris, Lactobacillus plantarum, Lactobacillus bulgaricus, or Streptococcus thermophilus. Inoculated milks were incubated at 30 degrees C or 37 degrees C for 24 to 72 h. Listeria monocytogenes survived and also grew to some extent during incubation in the presence of all starter cultures; however, inhibition ranged from 83 to 100% based on maximum cell populations. During incubation with L. bulgaricus and L. plantarum, L. monocytogenes was completely inactivated after 20 h and 64 h of incubation at 37 degrees C and 30 degrees C, respectively. The pH of the fermenting milks declined steadily throughout the fermentation periods and was approximately 4.2 at the conclusion of the experimental period regardless both of the starter culture and pathogen combination or the temperature of incubation.  相似文献   

6.
Seven batches of Arzúa-Ulloa, a short-ripened soft cow's milk cheese produced in Galicia (NW Spain), were prepared from pasteurized milk. Two control batches of cheese (CB) were made with an acid-aromatic starter containing Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. lactis var. diacetylactis, isolated from raw-milk Arzúa-Ulloa cheeses. Five batches of cheese (LB) were made with the acid-aromatic starter plus one of five strains of mesophilic homofermentative Lactobacillus spp.: four of them isolated from raw-milk Arzúa-Ulloa cheese (characterized in previous works) and the remaining was a commercial Lactobacillus strain. Higher counts of mesophilic viable bacteria, lactic acid bacteria and citrate-fermenting bacteria were found on days 1 or 15 of ripening, while higher counts of lactobacilli were found on day 30 of ripening. On day 1 of ripening the highest diacetyl-acetoin content was noted in the CB, but after day 15 the diacetyl-acetoin content was similar or higher in three of the five LB. The mean degradation of beta-casein in CB was higher than in LB, while the degradation of alpha(s1)-casein was higher in LB. The mean contents of nitrogen-soluble fractions were slightly higher in the LB than in the CB. Volatile free fatty acid (VFFA) contents were, in general, greater in LB than in CB and maximum amounts were determined on day 15 of maturation. Sensorial analysis indicated a more acid taste was in LB, while bitter and astringent tastes were more intense in CB. A positive correlation was found between beta-casein degradation and bitter taste. Yogurt and butter aromas were more intense in CB and in two of the five LB. Firmness was lower in LB and a negative correlation was found between this parameter and alpha(s1)-casein degradation. Crumbliness showed a positive correlation with beta-casein degradation. The use of the Lactobacillus strains assessed in this study is recommended for Arzúa-Ulloa cheese manufacture, in order to enhance the desirable characteristics of this cheese variety, i.e., a soft texture due to alpha(s1)-casein proteolysis but without the bitter taste due to beta-casein degradation and a spicy and slightly rancid aroma and taste.  相似文献   

7.
The ability of Salmonella Enteritidis to survive in the presence of phage, SJ2, during manufacture, ripening, and storage of Cheddar cheese produced from raw and pasteurized milk was investigated. Raw milk and pasteurized milk were inoculated to contain 10(4) CFU/ml of a luminescent strain of Salmonella Enteritidis (lux) and 10(8) PFU/ml SJ2 phage. The milks were processed into Cheddar cheese following standard procedures. Cheese samples were examined for Salmonella Enteritidis (lux), lactic acid bacteria, molds and yeasts, coliforms, and total counts, while moisture, fat, salt, and pH values were also measured. Salmonella Enteritidis (lux) was enumerated in duplicate samples by surface plating on MacConkey novobiocin agar. Bioluminescent colonies of Salmonella Enteritidis were identified in the NightOwl molecular imager. Samples were taken over a period of 99 days. Counts of Salmonella Enteritidis (lux) decreased by 1 to 2 log cycles in raw and pasteurized milk cheeses made from milk containing phage. In cheeses made from milks to which phage was not added, there was an increase in Salmonella counts of about 1 log cycle. Lower counts of Salmonella Enteritidis (lux) were observed after 24 h in pasteurized milk cheese containing phage compared to Salmonella counts in raw milk cheese with phage. Salmonella Enteritidis (lux) survived in raw milk and pasteurized milk cheese without phage, reaching a final concentration of 10(3) CFU/g after 99 days of storage at 8 degrees C. Salmonella did not survive in pasteurized milk cheese after 89 days in the presence of phage. However, Salmonella counts of approximately 50 CFU/g were observed in raw milk cheese containing phage even after 99 days of storage. In conclusion, this study demonstrates that the addition of phage may be a useful adjunct to reduce the ability of Salmonella to survive in Cheddar cheese made from both raw and pasteurized milk.  相似文献   

8.
In response to increasingly stringent microbial specifications being imposed by purchasers of frozen blueberries, chlorine dioxide (ClO2) gas generated by a dry chemical sachet was assessed for inactivation of Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7 as well as five yeasts and molds known for blueberry spoilage. Fresh blueberry samples (100 g) were separately inoculated with cocktails of L. monocytogenes, Salmonella, E. coli O157:H7 (three strains each), or yeasts and molds (five strains each) to contain approximately 10(6) CFU/g and exposed to ClO2 (4 mg/liter, 0.16 mg/g) for 12 h in a sealed 20-liter container (99.9% relative humidity) at approximately 22 degrees C. After gassing, 25 g of blueberries was added to 225 ml of neutralizing buffer, pulsified for 1 min, and plated using standard procedures to quantify survivors. This treatment yielded reductions of 3.94, 3.62, 4.25, 3.10, and 3.17 log CFU/g for L. monocytogenes, Salmonella, E. coli O157:H7, yeasts, and molds, respectively. Thereafter, 30 lugs of uninoculated blueberries (approximately 9.1 kg per lug) were stacked on 1.2 by 1.2-m pallets (5 lugs per level x six levels), tarped, and exposed to ClO2 (18 mg/liter, 0.13 mg/g) for 12 h. After gassing, significant (P < 0.05) reductions of 2.33, 1.47, 0.52, 1.63, and 0.48 log CFU/g were seen for mesophilic aerobic bacteria, coliforms, E. coli, yeasts, and molds, respectively, compared with non-gassed controls. No significant differences (P > 0.05) in microbial inactivation were seen between lug levels and, with one exception (mesophilic aerobic bacteria), between the bottom and top surface of individual lugs. Based on these findings, ClO2 sachets may provide a simple, economical, and effective means of enhancing the microbial shelf life and safety of blueberries.  相似文献   

9.
Ready-to-eat (RTE) meats (low-fat pastrami, Strassburg beef, export sausage, and Cajun beef) were pressure treated at 600 MPa, 20 degrees C, for 180 s to evaluate the feasibility of using high-pressure processing (HPP) for the safe shelf-life extension of these products. After processing, samples were stored at 4 degrees C for 98 days during which time microbiological enumeration and enrichments were performed. Additionally, sensory analyses were undertaken to determine consumer acceptability and purchase intent over the duration of storage. Counts of aerobic and anaerobic mesophiles, lactic acid bacteria, Listeria spp., staphylococci, Brochothrix thermosphacta, coliforms, and yeasts and molds revealed that there were undetectable or low levels for all types of microorganisms throughout storage. Comparison of consumer hedonic ratings for unprocessed and processed meats revealed no difference in consumer acceptability, and no deterioration in the sensory quality was evident for any of the products tested during the study. Additionally, inoculated pack studies were conducted to determine if HPP could be used as a postlethality treatment to reduce or eliminate Listeria monocytogenes and thus assess the potential use of HPP in a hazard analysis critical control point plan for production of RTE meats. Inoculated samples (initial level of 10(4) CFU/g) were pressure treated (600 MPa, 20 degrees C, for 180 s) and stored at 4 degrees C, and survival of L. monocytogenes was monitored for 91 days. L. monocytogenes was not detected by plating methods until day 91, but selective enrichments showed sporadic recovery in three of the four products examined. The results show that HPP at 600 MPa, 20 degrees C, for 180 s can extend the refrigerated shelf life of RTE meats and reduce L. monocytogenes numbers by more than 4 log CFU/g in inoculated product.  相似文献   

10.
One-hundred samples of ayib, a traditional Ethiopian cottage cheese, were purchased from Awassa market and analysed for their aerobic mesophilic counts, psychrotropic counts, yeasts and molds, coliforms, spore-formers, enterococci, lactic acid bacteria, Listeria monocytogenes, staphylococci and Bacillus cereus. The majority of the samples showed counts of mesophilic aerobic bacteria, yeasts and enterococci of 108, 107 and 107 cfu/g. About 55% of the samples were positive for coliforms and faecal coliforms. Listeria spp. were not detected in any of the samples. B. cereus and S. aureus were isolated at varying frequencies but at low numbers (102–103). The pH value of the samples varied between 3.3 and 4.6 with about 40% having pH lower than 3.7.  相似文献   

11.
A total of 4172 samples of milk, cheese and other dairy products were examined over a 1-year period for the presence of Listeria species. Strains of Listeria were found most frequently in soft, ripened cows milk cheese; 63 out of 769 (8.2%) samples contained Listeria monocytogenes, 25 samples contained species other than L. monocytogenes, and 18 samples contained both L. monocytogenes and other Listeria spp. Eleven samples of pasteurized cows milk (1.1%) from four dairies contained L. monocytogenes, and other Listeria spp. were isolated from a further five samples. Goats and ewes milk and their products, yogurt, cream and ice cream also occasionally contained Listeria spp. Levels of Listeria were usually low, but 20 samples of cheese contained more than 1000 cfu/g. Most strains of L. monocytogenes belonged to serotype 1/2 (58%) or serotype 4b (33%).  相似文献   

12.
A complex microbial consortium derived from raw milk and composed of populations classified in 4 groups (lactic acid bacteria (A), Gram positive catalase positive bacteria (B), Gram negative bacteria (C) and yeasts (D)) can contribute to the inhibition of Listeria monocytogenes in the core of an uncooked pressed cheese. To identify what groups may be involved in the inhibition, the consortium was simplified by successively omitting one group at a time. Pasteurized milk was inoculated with these more or less complex consortia and their effects on L. monocytogenes count, pH, acids and volatile compounds in the core of uncooked pressed cheese were evaluated. The growth of L. monocytogenes was the highest in cheeses prepared with pasteurized milk and only St. thermophilus. Inhibition in other cheeses was expressed by comparison with growth in these ones. All the consortia containing both lactic acid bacteria (group A) and Gram positive catalase positive bacteria (group B)--ABCD, ABD, ABC, AB--were more inhibitory than those containing lactic acid bacteria on its own (A) or associated only with yeasts (AD) or/and Gram negative (ADC). Consortia without lactic acid bacteria were weakly inhibitory or had no effect. Gram positive catalase positive bacteria alone were not inhibitory although most of the species became established in the cheeses. The Lactobacillus population (Lb. casei, Lb. plantarum, Lb. curvatus and Lb. farciminis) was predominant in cheeses (9 log CFU/g) with a higher count than Leuconostoc (7 log CFU/g) and Enterococcus (7 log CFU/g). Lactobacillus counts were negatively correlated with those of L. monocytogenes (r=-0.84 at 18 days) and with the level of D-lactic acid. There was no correlation between L. monocytogenes and Leuconostoc or Enterococcus counts. Complex consortium ABCD and AB not only had a stronger inhibitory power in cheeses than consortium AD, they were also associated with the highest levels of L-lactic and acetic acids. All cheeses inoculated with lactic acid bacteria differed from those without by higher levels of ethyl formiate, pentane and alcohols (2-butanol, 2-pentanol), and lower levels of ketones (2-hexanone, 2,3-butanedione) and aldehydes (2-methyl-butanal). Levels of 2-methyl-butanal, 2-butanol and 2-pentanol were higher in ABCD and AB cheeses than in AD cheeses. Beside their contribution to the inhibition, their effect on cheese flavour must be evaluated.  相似文献   

13.
Kaşar cheese samples were produced from raw milk and starter culture-added pasteurized milk. Chemical, microbiological and organoleptic properties of kaşar cheeses were analysed at certain times during the ripening periods (on the 1st, 7th, 15th, 30th, 60th, 90th days). Generally, chemical parameters were not affected by starter culture. The pH, ripening index, water-soluble nitrogen and non-protein nitrogen did not show significant differences between the cheese samples. The addition of starter affected the microbiological quality of the cheeses. Starter culture-added kaşar cheeses contained low levels of total aerobic mesophilic bacteria, moulds and yeasts, and coliforms, and achieved higher organoleptic scores than those of cheeses made from raw milk. The starter cultures contributed to acidity and microbial quality of the cheese.  相似文献   

14.
The purpose of this study was to assess the chemical and microbial characteristics of 12 batches of artisanal Fiore Sardo, a protected designation of origin (PDO) hard cheese made from raw ewe's milk without addition of starters, during maturation. High standard deviations were observed for moisture percentage, total solids percentage and NaCl percentage content, possibly owing to differences in manufacturing processes and/or milk composition. Total mesophilic bacteria varied between 10 log10 cfu/g in 48-h-old cheese samples and 3 log10 cfu/g in 9-month-old samples. Total coliforms and staphylococci showed the highest counts at 48 h of ripening then decreased significantly, dropping to levels below 2 log10 cfu/g at 3 months of maturation. Lactic acid bacteria and enterococci were the dominant micro-organisms throughout maturation. They were mainly represented by the species Lactococcus lactis ssp. lactis, Enterococcus faecium, Lactobacillus plantarum and Lactobacillus casei group. Low levels of yeasts were detected throughout the maturation period of the cheese. Debaryomyces hansenii and Kluyveromyces lactis var. lactis were the prevalent yeast species isolated.  相似文献   

15.
Two commercial starters were investigated for their potential ability to decarboxylate amino acids during goat cheese ripening. Two batches of goat cheese were produced with identical pasteurized milk but different starter cultures. One of them contained Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris and the other Lactococcus lactis subsp. lactis. The amine contents, microbial counts, proteolysis-related parameters, pH, total solids and salt content were studied in raw materials and cheeses. In raw materials, polyamines were the prevailing amines, whereas the main amines in cheeses were putrescine, tryptamine and, in particular, tyramine (94.59 mg/kg). Aerobic mesophilic microorganisms and Lactococcus counts increased throughout ripening, while Enterobacteriaceae were no longer detectable in cheese after 30 days of ripening. Amine concentration rose during cheese ripening in both batches. Moreover, the decarboxylase activity of microorganisms isolated from samples during cheese ripening was assayed and discussed.  相似文献   

16.
This study aims to control the presence of Listeria monocytogenes and Vibrio parahaemolyticus and the formation of biogenic amines in cold-smoked salmon by gamma irradiation. Irradiation at doses of 3 and 1 kGy inactivated 6.59 and 6.05 log cfu/g of L. monocytogenes and V. parahaemolyticus in the inoculated samples, respectively. Furthermore, irradiation of the un-inoculated samples significantly decreased their microbial populations of mesophilic aerobic bacteria, anaerobic bacteria, psychrophilic bacteria, lactic acid bacteria, and molds and yeasts. The Enterobacteriaceae were almost undetectable in samples irradiated at 2 kGy dose. The concentrations of biogenic amines significantly decreased in the irradiated samples due to microbial inactivation. However, irradiation of samples had no significant effects on their moisture and salt contents as well as on their pH values, total volatile base nitrogen, and trimethylamine nitrogen contents, but significantly decreased their amounts of phenolic compounds and increased their levels of thiobarbituric acid reactive substances. Moreover, irradiation treatments at doses up to 3 kGy showed no significant effect on the sensory acceptability of samples. Therefore, gamma irradiation at dose of 3 kGy can be successfully applied to provide significant improvement in the safety of cold smoked salmon with respect to L. monocytogenes, V. parahaemolyticus, and biogenic amines without adverse effects on chemical or sensory quality attributes of the product.  相似文献   

17.
The effects of fog sanitization with peroxyacetic acid (hydrogen peroxide, peracetic acid, and acetic acid in combination) on general hygiene (aerobic plate count) and on Listeria monocytogenes were assessed in a slicing area at a salmon smokehouse and compared with the effects of foam sanitization with sodium hypochlorite (routinely performed at the smokehouse). Two hundred twenty-three environmental samples were collected with sponges and swabs after each of the sanitization procedures, and 68 samples were collected during production. The total culturable aerobic plate count was determined for each sample, and a total of 288 bacterial strains were randomly isolated and tentatively identified to genus level by physiological and biochemical tests. The microflora was dominated by Neisseriaceae, Enterobacteriaceae, and lactic acid bacteria during production. Foam sanitization caused a change in the composition of the flora, with Pseudomonas spp. and Alcaligenes spp. being the dominant gram-negative bacteria and Kurthia spp. and Bacillus spp. being the surviving gram-positive bacteria. Bacteria were very sensitive to fog sanitization, and yeasts accounted for almost half of the surviving flora. By a selective isolation method, strains of L. monocytogenes were isolated and subsequently characterized by random amplified polymorphic DNA (RAPD) typing. Following foam sanitization, 14 to 42% of the samples contained <10 CFU per site, whereas 29 to 78% of the samples collected after fog sanitization contained this level of bacteria. The prevalence of L. monocytogenes was unchanged, but L. monocytogenes was found only in poorly cleaned areas such as drains. The RAPD types for all positive samples were identical to the type that had persisted in the smokehouse since 1995, indicating the importance of drains as a niche.  相似文献   

18.
The aim of this study was to characterize the lactic acid bacteria (LAB) isolated from White Pickled cheeses produced with traditional methods; and to improve the quality of cheesemaking with a selection of bacterial cultures from artisanal White cheeses. LAB were isolated and identified from 30 White Pickled cheese samples collected from various cities in Turkey. Also, the numbers of several microbial groups (total aerobic mesophilic bacteria, LAB, enterococci, coliforms, moulds and yeasts) of cheese samples were enumerated. Lactobacilli, lactococci and enterococci were the most abundant microbial groups. The numbers of Enterococcus and Lactobacillus isolates were higher than those of the other LAB. Enterococcus faecalis (24.43%), Enterococcus faecium (17.61%) and Lactobacillus fermentum (19.88%) isolates were the most frequently isolated species. Lactococcus strains showed the highest acidifying activity, followed by Enterococcus and Lactobacillus strains. Proteolytic activity of Enterococcus faecalis strains was higher than that of the other enterococci species, except Enterococcus avium strains. Within lactobacilli strains, the highest mean proteolytic activity was that of Lactobacillus bifermentans, Lactobacillus brevis and Lactobacillus casei strains.  相似文献   

19.
Erkmen O 《Die Nahrung》2001,45(1):55-58
Listeria monocytogenes was enumerated during the manufacture and ripening of Turkish White cheese with particular reference to a) pasteurized milk, b) cheese milk after inoculation with L. monocytogenes (0 h), c) after curd formation (2 h), d) curd after pressing (6 h), e) curd after pH was reduced (17 h), f) curd after salting (32 h), and g) cheeses during ripening. Cheeses were also examined periodically for total solids, moisture and salt contents, pH values and aerobic plate count. An increase in the number of L. monocytogenes was observed during manufacture. Following salting and throughout the storage period, numbers of L. monocytogenes decreased at a rate depending on the salt concentration, starter activity and storage time. The initial microbial number had a significant (P < 0.01) effect on the survival of L. monocytogenes during the storage period.  相似文献   

20.
The effect of two different experimental adjunct cultures composed of native facultatively heterofermentative lactobacilli (FHL) on the development of various groups of micro-organisms in Roncal-type ewes' milk cheese was studied. Four cheese batches were manufactured from raw milk (C), pasteurized milk (P), pasteurized milk and an adjunct culture of Lactobacillus paracasei (PP); and pasteurized milk and adjunct culture of Lactobacillus paracasei plus Lactobacillus plantarum (PPP). Retention of the two adjunct cultures in the cheeses was good, and population levels remained constant at around 10(7) cfu g(-1) of cheese throughout ripening. Levels of Enterobacteriaceae and enterococci fell off more abruptly in the batches made with the Lactobacillus adjunct cultures, suggesting competition between the added lactobacilli and those groups of micro-organisms. The inhibitory effect was greater for the adjunct culture composed of L. paracasei plus L. plantarum. Lactococcal levels were higher in the batches made with added FHL, which may be indicative of a synergistic effect between these two groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号