首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new and practical approach using the cepstrum technique is proposed in the design of minimum-phase digital filters as the sum of two allpass functions. The desired magnitude response is specified in the frequency domain. Its corresponding minimum-phase response is then obtained from the desired magnitude response. The desired phases for the two allpass filters are obtained from the magnitude and phase responses. For both filters to be stable, the corresponding denominator polynomials are minimum phase. The filter coefficients are obtained from the desired phases using the cepstrum technique. Design examples show that the method works well for both classical filter specification and general magnitude specification in the frequency domain.  相似文献   

2.
This paper presents two-step design methodologies and performance analyses of finite-impulse response (FIR), allpass, and infinite-impulse response (IIR) variable fractional delay (VFD) digital filters. In the first step, a set of fractional delay (FD) filters are designed. In the second step, these FD filter coefficients are approximated by polynomial functions of FD. The FIR FD filter design problem is formulated in the peak-constrained weighted least-squares (PCWLS) sense and solved by the projected least-squares (PLS) algorithm. For the allpass and IIR FD filters, the design problem is nonconvex and a global solution is difficult to obtain. The allpass FD filters are directly designed as a linearly constrained quadratic programming problem and solved using the PLS algorithm. For IIR FD filters, the fixed denominator is obtained by model reduction of a time-domain average FIR filter. The remaining numerators of the IIR FD filters are designed by solving linear equations derived from the orthogonality principle. Analyses on the relative performances indicate that the IIR VFD filter with a low-order fixed denominator offers a combination of the following desirable properties including small number of denominator coefficients, lowest group delay, easily achievable stable design, avoidance of transients due to nonvariable denominator coefficients, and good overall magnitude and group delay performances especially for high passband cutoff frequency ( ges 0.9pi) . Filter examples covering three adjacent ranges of wideband cutoff frequencies [0.95, 0.925, 0.9], [0.875, 0.85, 0.825], and [0.8, 0.775, 0.75] are given to illustrate the design methodologies and the relative performances of the proposed methods.  相似文献   

3.
This paper presents a new direct design of infinite-impulse response (IIR) filters with a flat magnitude response in both passband and stopband (Butterworth filters). The design specifications are passband and stopband frequencies and passband droop and stopband attenuation. The approach is based on an allpass filter with flatness at frequency points /spl omega/=0 and /spl omega/=/spl pi/. Depending on the parity of the IIR filter order, the allpass filter is either real or complex. However, in both cases, the resulting IIR filter is real.  相似文献   

4.
The use of fractional delay to control the magnitudes and phases of integrators and differentiators has been addressed. Integrators and differentiators are the basic building blocks of many systems. Often applications in controls, wave-shaping, oscillators and communications require a constant 90deg phase for differentiators and -90deg phase for integrators. When the design neglects the phase, a phase equaliser is often needed to compensate for the phase error or a phase lock loop should be added. Applications to the first-order, Al-Alaoui integrator and differentiator are presented. A fractional delay is added to the integrator leading to an almost constant phase response of -90deg. Doubling the sampling rate improves the magnitude response. Combining the two actions improves both the magnitude and phase responses. The same approach is applied to the differentiator, with a fractional sample advance leading to an almost constant phase response of 90deg. The advance is, in fact, realised as the ratio of two delays. Filters approximating the fractional delay, the finite impulse response (FIR) Lagrange interpolator filters and the Thiran allpass infinite impulse response (IIR) filters are employed. Additionally, a new hybrid filter, a combination of the FIR Lagrange interpolator filter and the Thiran allpass IIR filter, is proposed. Methods to reduce the approximation error are discussed.  相似文献   

5.
Weighted least-squares design of recursive allpass filters   总被引:1,自引:0,他引:1  
A method for the design of allpass filters is described. In this method, an error reflecting the difference between the desired phase response and the phase response of the practical allpass filter is formulated in a quadratic form. The coefficients are obtained by solving a system of linear equations involving the sum of a Toeplitz and an Hankel matrix  相似文献   

6.
The design of two-channel linear-phase nonuniform-division filter (NDF) banks constructed by infinite impulse response (IIR) digital allpass filters (DAFs) in the sense of L/sub /spl infin// error criteria is considered. First, the theory of two-channel NDF bank structures using two IIR DAFs is developed. Then, the design problem is appropriately formulated to result in a simple optimization problem. Utilizing a variant of Karmarkar's algorithm, we can efficiently solve the optimization problem through a frequency sampling and iterative approximation method to find the coefficients for the IIR DAFs. The resulting two-channel NDF banks can possess approximately linear-phase response without magnitude distortion. The effectiveness of the proposed technique is achieved by forming an appropriate Chebyshev approximation of a desired phase response and then to find its solution from a linear subspace in a few iterations. Several simulation examples are presented for illustration and comparison.  相似文献   

7.
We present a new technique for the design of multiplierless IIR elliptic filters. The multiplierless filter has all multiplication constants implemented with a small number of shifters and adders. The proposed technique is based on sensitivity analysis. An analytical expression for amplitude response sensitivity is derived for the filter structures consisting of two allpass subfilters in parallel. It is shown that the amplitude response sensitivity to some constant x can be expressed as a product of the filter reflectance function and the phase sensitivity of the allpass section that implements the constant. The closed-form expressions for the phase sensitivities of the first- and second-order allpass sections are also developed. It is shown in the paper that the (n+1)/2 most sensitive constants can be directly controlled by the transfer function parameters if the transfer function is derived by the bilinear transformation from an elliptic minimal Q-factors (EMQF) analog prototype. This way, (n+1)/2 multiplication constants can be implemented without quantization, leaving the filter characteristic strictly elliptic. This is achieved for a class of low-noise allpass sections and for the wave lattice digital filter as well. The quantization of the remaining (n-1)/2 less-sensitive constants is performed using the phase-tolerance scheme and phase-sensitivity functions. The proposed design technique is straight-forward and, consequently, very fast. The application is demonstrated on the examples of narrowband, wideband, and halfband filters  相似文献   

8.
This paper presents a noniterative weighted-least-squares (WLS) method for designing allpass variable fractional-delay (VFD) digital filters. After expressing each coefficient of an allpass VFD filter as a polynomial of the VFD parameter p, we develop a noniterative technique for finding the optimal polynomial coefficients, and show that the allpass VFD filter design problem can be efficiently solved without using any iterative procedure while a closed-form solution can be easily obtained through solving a matrix equation. Compared with the existing iterative WLS method that solves a series of approximately linearized WLS minimization problems, the proposed noniterative one can yield much better design results with significantly reduced computational complexity. Moreover, the new WLS method does not involve any convergence issue.  相似文献   

9.
Complex notch filter design using allpass filter   总被引:1,自引:0,他引:1  
Complex coefficient IIR notch filter design problems are investigated. The specification of a notch filter is first transformed into that of an allpass filter. An effective approach to the design of this desired allpass filter is developed. The realisation of the proposed notch filter is equivalent to the realisation of an allpass filter. Owing to the mirror-image symmetry relation between the numerator and denominator polynomials of allpass filters, the notch filter can be realised by a computationally efficient lattice structure with very low sensitivity  相似文献   

10.
We propose a new allpass-based structure for the IIR Mth-and 2Mth-band filters. These filters consist of M allpass filters and an interpolation filter (sum of two allpasses). Consequently, the proposed structure is very efficient in implementation. By choosing the allpass phase appropriately, the resulting phase response of the IIR Mth-band filter becomes approximately linear. An example is designed and compared with FIR Mth-band filters  相似文献   

11.
Perfect linear-phase two-channel QMF banks require the use of finite impulse response (FIR) analysis and synthesis filters. Although they are less expensive and yield superior stopband characteristics, perfect linear phase cannot be achieved with stable infinite impulse response (IIR) filters. Thus, IIR designs usually incorporate a postprocessing equalizer that is optimized to reduce the phase distortion of the entire filter bank. However, the analysis and synthesis filters of such an IIR filter bank are not linear phase. In this paper, a computationally simple method to obtain IIR analysis and synthesis filters that possess negligible phase distortion is presented. The method is based on first applying the balanced reduction procedure to obtain nearly allpass IIR polyphase components and then approximating these with perfect allpass IIR polyphase components. The resulting IIR designs already have only negligible phase distortion. However, if required, further improvement may be achieved through optimization of the filter parameters. For this purpose, a suitable objective function is presented. Bounds for the magnitude and phase errors of the designs are also derived. Design examples indicate that the derived IIR filter banks are more efficient in terms of computational complexity than the FIR prototypes and perfect reconstruction FIR filter banks. Although the PR FIR filter banks when implemented with the one-multiplier lattice structure and IIR filter banks are comparable in terms of computational complexity, the former is very sensitive to coefficient quantization effects  相似文献   

12.
A novel structure using recursive nonsymmetric half-plane (NSHP) digital allpass filters (DAFs) is presented for designing 2-D recursive digital filters. First, several important properties of 2-D recursive DAFs with NSHP support regions for filter coefficients are investigated. The stability of the 2-D recursive NSHP DAFs is guaranteed by using a spectral factorization-based algorithm. Then, the important characteristics regarding the proposed novel structure are discussed. The design problem of 2-D recursive digital filters using the novel structure is considered. We formulate the problem by forming an objective function consisting of the weighted sum of magnitude, group delay, and stability-related errors. A design technique using a trust-region Newton-conjugate gradient method in conjunction with the analytic derivatives of the objective function is presented to efficiently solve the resulting optimization problem. The novelty of the presented 2-D structure is that it possesses the advantage of better performance in designing a variety of 2-D recursive digital filters over existing 2-D filter structures. Finally, several design examples are provided for conducting illustration and comparison.  相似文献   

13.
This paper presents a method for the frequency domain design of infinite impulse response (IIR) digital filters. The proposed method designs filters approximating prescribed magnitude and phase responses. IIR filters of this kind can have approximately linear-phase responses in their passbands, or they can equalize magnitude and phase responses of given systems. In many cases, these filters can be implemented with less memory and with fewer computations per output sample than equivalent finite impulse response (FIR) digital filters. An important feature of the proposed method is the possibility to specify a maximum radius for the poles of the designed rational transfer function. Consequently, stability can be guaranteed, and undesired effects of implementations using fixed-point arithmetic can be alleviated by restricting the poles to keep a prescribed distance from the unit circle. This is achieved by applying Rouche's theorem in the proposed design algorithm. We motivate the use of IIR filters with an unequal number of poles and zeros outside the origin of the complex plane. In order to satisfy simultaneous specifications on magnitude and phase responses, it is advantageous to use IIR filters with only a few poles outside the origin of the z-plane and an arbitrary number of zeros. Filters of this type are a compromise between IIR filters with optimum magnitude responses and phase-approximating FIR filters. We use design examples to compare filters designed by the proposed method to those obtained by other methods. In addition, we compare the proposed general IIR filters with other popular more specialized structures such as FIR filters and cascaded systems consisting of frequency-selective IIR filters and phase-equalizing allpass filters  相似文献   

14.
The design of two-channel linear-phase quadrature mirror filter (QMF) banks constructed by real infinite impulse response (IIR) digital all-pass filters is considered. The design problem is appropriately formulated to result in a simple optimisation problem. Using a variant of Karmarkar's algorithm, the optimisation problem can be efficiently solved through a frequency sampling and iterative approximation method to find the real coefficients for the IIR digital all-pass filters. The resulting two-channel QMF banks possess an approximately linear phase response without magnitude distortion. The effectiveness of the proposed technique is achieved by forming an appropriate Chebyshev approximation of the desired phase response and then finding its solution from a linear subspace in a few iterations. Finally, several simulation examples are presented for illustration and comparison  相似文献   

15.
We apply the eigenfilter method to design an allpass filter that approximates a given phase response in the least-squares (LS) sense. As it is not possible to express the exact LS phase error as a quadratic form suitable for eigenfilter formulation, alternative error measures that approximate the ideal LS error are proposed. For each of these new formulations, the allpass coefficients are obtained as the elements of the eigenvector corresponding to the minimum eigenvalue of a real, symmetric, and positive definite matrix. We propose a fast-converging iterative technique to approximate the ideal LS phase error solution. By employing an iterative weighting technique, the phase error can he made approximately equiripple. The design methods are illustrated with various practical examples and the results are compared to allpass filters designs reported in the literature  相似文献   

16.
王路  赖春露 《电子学报》2018,46(11):2781-2786
多数信号滤波应用,对滤波器幅频响应的要求高于相频响应.本文研究了满足幅频响应约束的有限脉冲响应(Infinite Impulse Response,FIR)数字滤波器设计,提出了最大加权相位误差最小化方法.用凸的椭圆误差约束代替非凸的幅值误差约束,将设计问题转化为凸问题;通过与二分技术结合,提出了给定权函数的幅值误差约束最大加权相位误差最小化设计的求解算法.以此算法为核心,构建了迭代重加权最大加权相位误差最小化算法,其中的权函数不再固定,而是基于修改的群延迟误差包络线在迭代中不断更新.权函数收敛后,所得滤波器具有近似等纹波的群延迟误差,最大群延迟误差得到了有效减小.仿真实验表明,与现有相位误差约束最大幅值误差最小化方法相比,得到的FIR滤波器具有更小的最大相位误差和最大群延迟误差.  相似文献   

17.
The transfer function of the low-pass nonlinear phase finite impulse response (NLPFIR) digital filter is decomposed into a nonlinear phase part and a linear phase part. An algorithm is proposed to iteratively design the magnitude of the linear phase part and the squared magnitude of the nonlinear phase part by directly calling the Remez algorithm of McClellan, et al. [1]. In the design of the nonlinear phase part, we assume that the linearity constraint on the phase is dropped but the phase response is not specified. A scheme is incorporated into our algorithm so that it can design the filter with the desired ripple ratio. This approach also leads to a method for finding the minimum ripple ratio for the given orders of the two parts and band edges of the filters. The filters with ripple ratio larger than this minimum value can be designed by our algorithm and neither passband nor stopband ripples are required to be prescribed. Analysis of roundoff noise reveals that the cascade filter implementation usually needs higher wordlengths than its direct for counterpart for the same roundoff noise performance.  相似文献   

18.
Efficient algorithms for the recursive identification of nonminimum-phase systems using an adaptive allpass filter together with an adaptive transversal filter are introduced. Both the output and input sequences are assumed to be available, and the proposed technique basically uses a linear predictor at the output of the system to equalise its magnitude response and an allpass filter to match its phase response. The mirror image property of the numerator and denominator polynomials in an allpass transfer function reduces the number of adaptive parameters needed compared to an unconstrained recursive identification scheme. Computer simulations are used to support the claims made in the paper  相似文献   

19.
The two-channel QMF filter bank based on allpass sections is one of the best known circuits for building up a multi-channel filter bank for signal compression. An analysis-synthesis combination can satisfy two of the three perfect reconstruction (PR) conditions. The third, the phase condition, can be met to any desired accuracy. However, when applied to images, PR is possible because non-causality can be allowed in the synthesis bank. The development of explicit formulae for the coefficients of such filters is considered. The resulting QMF designs can be used in a wavelet structure for image compression problems using rectangular or diamond symmetry. Several design examples are given, including a comparison of performance with FIR filter banks for such problems  相似文献   

20.
A new canonical current-mode (CM) filter topology is presented. It realizes first-order allpass filtering functions using two dual-output current-controlled current conveyors (DO-CCCII) and a single capacitor. The topology gives both inverting and non-inverting types of these filters. Owing to electronically tunability properties of the CCCII, phase response of the circuit can be controlled by an external control current. Realization of the allpass filter imposes no matching condition. All outputs of the filters exhibit high output impedances so that this property makes the circuits very attractive from the viewpoint of cascading in current mode. The theoretical results are verified with PSPICE simulations using a BJT realization of CCCII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号