首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improvement of Dry EDM Characteristics Using Piezoelectric Actuator   总被引:1,自引:0,他引:1  
This paper describes improvement of the machining characteristics of dry electrical discharge machining (dry EDM) by controlling the discharge gap distance using a piezoelectric actuator. Dry EDM is a new process characterized by small tool electrode wear, negligible damage generated on the machined surface, and significantly high material removal rate especially when oxygen gas is used. However, the narrow discharge gap length compared with conventional EDM using oil as the dielectric working fluid results in frequent occurrence of short circuiting which lowers material removal rate. A piezoelectric actuator with high frequency response was thus introduced to help control gap length of the EDM machine. To elucidate the effects of the piezoelectric actuator, an EDM performance simulator was newly developed to evaluate the machining stability and material removal rate of dry EDM.  相似文献   

2.
A versatile process of electrical discharge machining (EDM) using magnetic force assisted standard EDM machine has been developed. The effects of magnetic force on EDM machining characteristics were explored. Moreover, this work adopted an L18 orthogonal array based on Taguchi method to conduct a series of experiments, and statistically evaluated the experimental data by analysis of variance (ANOVA). The main machining parameters such as machining polarity (P), peak current (Ip), pulse duration (τp), high-voltage auxiliary current (IH), no-load voltage (V) and servo reference voltage (Sv) were chosen to determine the EDM machining characteristics such as material removal rate (MRR) and surface roughness (SR). The benefits of magnetic force assisted EDM were confirmed from the analysis of discharge waveforms and from the micrograph observation of surface integrity. The experimental results show that the magnetic force assisted EDM has a higher MRR, a lower relative electrode wear ratio (REWR), and a smaller SR as compared with standard EDM. In addition, the significant machining parameters, and the optimal combination levels of machining parameters associated with MRR as well as SR were also drawn. Moreover, the contribution for expelling machining debris using the magnetic force assisted EDM would be proven to attain a high efficiency and high quality of surface integrity to meet the demand of modern industrial applications.  相似文献   

3.
To develop a hybrid process of abrasive jet machining (AJM) and electrical discharge machining (EDM),the effects of the hybrid process parameters on machining performance were comprehensively investigated to confirm the benefits of this hybrid process.The appropriate abrasives delivered by high speed gas media were incorporated with an EDM in gas system to construct the hybrid process of AJM and EDM,and then the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process to increase the efficiency of material removal and reduce the surface roughness.In this study,the benefits of the hybrid process were determined as the machining performance of hybrid process was compared with that of the EDM in gas system.The main process parameters were varied to explore their effects on material removal rate,surface roughness and surface integrities.The experimental results show that the hybrid process of AJM and EDM can enhance the machining efficiency and improve the surface quality.Consequently,the developed hybrid process can fit the requirements of modern manufacturing applications.  相似文献   

4.
Micro EDM is one of the most powerful technologies which are capable of fabricating micro-structure. However, there are many operating parameters that affect the micro EDM process. Since the EDM is basically a thermal process, the supplying electrical condition can be an important factor. The conditions generally consist of several parameters such as electrical current, voltage, pulse duration, spark gap, and others. Those are decisive in removal rate, wear rate, and machining accuracy, which are characteristics of EDM. In this study, the influences of EDM pulse condition on the micro EDM properties were investigated. Voltage, current, and on/off time of the pulse were selected as experimental parameters based on a simple equation for the material removal rate. The pulse condition is particularly focused on the pulse duration and the ratio of off-time to on-time, and the machining properties are reported on tool wear, material removal rate, and machining accuracy. The experimental results show that the voltage and current of the pulse exert strongly to the machining properties and the shorter EDM pulse is more efficient to make a precision part with a higher material removal rate.  相似文献   

5.
Film cooling holes are widely used in the aerospace industry, and their fabrication requires high machining speed and accuracy, as well as good surface quality. Tube electrode high-speed electrochemical discharge drilling (TSECDD) is a promising hybrid machining method for the fabrication of film cooling holes in difficult-to-machine superalloys. An electrochemical reaction can occur if a low-conductivity salt solution is used in the drilling. Materials can also be removed at a high speed using electrical discharge machining (EDM). Thus, TSECDD and electrochemical machining (ECM) can be combined into a unique machining process using a low-conductivity salt solution. This machining process achieves both a high machining speed and good surface finish. In this study, the material removal mechanism of TSECDD was studied using a low-conductivity salt solution, and comparisons with high-speed electrical discharge drilling were made. The performance of the process was investigated using salt solutions of various conductivities. The results show that there are different material removal mechanisms in the frontal gap and the lateral gap and that, in the latter, there is a transition from EDM to ECM. Experiments conducted using TSECDD confirm that the use of this process with a low-conductivity salt solution can improve the machining surface and machining efficiency achieved. The results also show that the use of a low-conductivity solution improves the material removal rate, the hole diameter, and the taper angle.  相似文献   

6.
A novel high-speed dry electrical discharge machining (EDM) method was proposed in this study. Using this method, the material can be rapidly melted by extremely high discharge energy and flushed out of the discharge gap by high-pressure and high-speed air flow. The material removal rate (MRR) of dry EDM was significantly improved by the proposed method. The MRR of dry EDM is usually in tens mm3/min, whereas the MRR of the proposed method can be as high as 5162 mm3/min, which improves the MRR by 2nd to 3rd order of magnitude. Investigation was conducted systemically. The influences of work piece polarity, discharge current, pulse duration time, gas pressure, and electrode rotation speed on machining performance were studied. The machining mechanism of this method was thoroughly analyzed. Moreover, the re-solidified layer, surface morphology, elementary composition, and phase of AISI 304 stainless steel for high-speed dry EDM were also investigated. Theoretical and technical foundations were laid for the industry application of dry EDM.  相似文献   

7.
Electrical discharge machining of Ti6Al4V with a bundled electrode   总被引:1,自引:0,他引:1  
The aim of this study is to investigate an efficient Ti6Al4V electrical discharge machining (EDM) process with a bundled die-sinking electrode. The feasibility of machining Ti6Al4V with a bundled electrode was studied and its effect on EDM performance was compared experimentally using a solid die-sinking electrode. The simulation results explain the high performance of the EDM process with a bundled electrode by through the use of multi-hole inner flushing to efficiently remove molten material from the inter-electrode gap and through the improved ability to apply a higher peak current. A 3-factor, 3-level experimental design was used to study the relationships between 2 machining performance parameters (material removal rate: MRR, tool wear ratio: TWR) and 3 machining parameters (fluid flow rate, peak current and pulse duration). The main effects and influences of the 2-factor interactions of these parameters on the performances of the EDM process with the bundled electrode are discussed.  相似文献   

8.
《CIRP Annals》1988,37(2):623-631
As a thermal machining process, Electro-Discharge Machining (EDM) provides a means of machining ceramic materials, irrespective of their hardness and strength, provided that their electrical conductivity values are of the order of 0.01 S/cm (100 Ω*cm), as is sometimes the case with engineering ceramics.EDM achieves high removal rates as compared with traditional techniques for the machining of these materials. The lack of correlation between the cutting rate, the surface roughness and the physical material parameters confirms that the removal mechanisms for machining conductive ceramics differ from those involved in metal machining. In order to ensure process stability, the grain structure evinced by the ceramic must be as fine and homogeneous as possible. The complex workpiece geometries and high accuracy to shape and size attainable with electro-discharge machining particularly favour its use in toolmaking.  相似文献   

9.
Near dry electrical discharge machining   总被引:4,自引:0,他引:4  
This study investigates the near dry electrical discharge machining (EDM) process. Near dry EDM uses liquid–gas mixture as the two phase dielectric fluid and has the benefit to tailor the concentration of liquid and properties of dielectric medium to meet desired performance targets. A dispenser for minimum quantity lubrication (MQL) is utilized to supply a minute amount of liquid droplets at a controlled rate to the gap between the workpiece and electrode. Wire EDM cutting and EDM drilling are investigated under the wet, dry, and near dry conditions. The mixture of water and air is the dielectric fluid used for near dry EDM in this study. Near dry EDM shows advantages over the dry EDM in higher material removal rate (MRR), sharper cutting edge, and less debris deposition. Compared to wet EDM, near dry EDM has higher material removal rate at low discharge energy and generates a smaller gap distance. However, near dry EDM places a higher thermal load on the electrode, which leads to wire breakage in wire EDM and increases electrode wear in EDM drilling. A mathematical model, assuming that the gap distance consists of the discharge distance and material removal depth, was developed to quantitatively correlate the water–air mixture's dielectric strength and viscosity to the gap distance.  相似文献   

10.
In order to improve the performance of machines, there is a growing need to develop a highly stable servo control system for electrical discharge machining (EDM). With the perpetual push towards the untended EDM operation, an adaptive control system is and will continue to be a primary option. In this paper, a new EDM adaptive control system which directly and automatically regulates tool-down-time has been developed. Based on the real-time-estimated parameters of the EDM process model, by using minimum-variance control strategy, the process controller, a self-tuning regulator, was designed to control the machining process so that the gap states follow the specified gap state. With a properly selected specified gap states, this adaptive system improves the machining rate by, approximately, 100% and in the meantime achieves a more robust and stable machining than the normal machining without adaptive control. This adaptive control system helps to gain the expected goal of an optimal machining performance.  相似文献   

11.
This paper compares the effects of high- and low-frequency forced axial vibration of the electrode, rotation of the electrode, and combinations of these methods in respect of material removal rate (MRR), tool wear rate and surface roughness in die sinking electro-discharge machining (EDM) with a flat electrode (planing mode).

The results of the combined states of rotation and vibration at high and low frequency (vibro-rotary EDM) are compared in order to establish which combinations are most appropriate to different machining regimes (finishing, semi-finishing and roughing). It is found that the combination of high-frequency vibration and rotation of the electrode is effective in attaining a high MRR at a specified surface roughness (Ra). This case is modelled by stepwise linear regression. The significant parameters are found by analysis of variance (ANOVA) and the optimum machining parameter settings are obtained using overlay contour plots. The advantages of vibration and rotation are seen to combine in this new process when employed for die sinking EDM with a flat electrode.  相似文献   


12.
This research mainly explores the influence of surfactant on the characteristics of electrical discharge machining (EDM) process on mold steel (SKD61). In this study, particle agglomeration is reduced after surfactant molecules cover the surface of debris and carbon dregs in kerosene solution. Debris is evenly dispersed in dielectric to improve the effects of carbon accumulation and dreg discharge, and reduce the unstable concentrated discharge. The EDM parameters, such as peak current, pulse duration, open voltage and gap voltage are studied in this paper. The experimental results show that after the addition of Span 20 (30 g/L) to dielectric, the conductivity of dielectric is increased. The machining efficiency is thus increased due to a shorter relay time of electrical discharge. When proper working parameters are chosen, the material removal rate is improved by as high as 40–80%. Although the improvement of surface roughness is not obvious, the surface roughness is not deteriorated since the material removal rate is great.  相似文献   

13.
微细电火花伺服扫描加工实验研究   总被引:2,自引:2,他引:0  
进行微细电火花三维扫描加工时,由于电极损耗相对严重,导致形位公差难以保证和加工效率较低。该研究分析了电火花加工常规的电极损耗补偿方法,提出了基于放电间隙伺服控制进行电极损耗实时补偿的微细电火花三维扫描加工方法。辅助以电极电接触感知工件平面和加工原点,三维结构加工实验显示,采用间隙伺服控制进行电极损耗实时补偿有利于提高扫描加工微三维结构的形位精度和加工效率。  相似文献   

14.
In recant years, surface modification of metals and machining of insulating ceramics by electrical discharge machining (EDM) have been successfully carried out. In surface modification by EDM with semi-sintered electrodes, worn substances in the gap region form the material source of the layer generated on the work-piece surface. In the machining of insulating ceramics by EDM, a crystallized carbon layer or carbide layer from the working oil covers the surface of the insulator. Increase in the thickness of the generated layer, however, tends to stop at a certain maximum value in both surface modification by EDM with semi-sintered electrodes and machining of insulating ceramics by EDM processes. In these machining operations, accretion and removal phenomena occur alternately. In this paper, the mechanisms of machining insulators and the accretion process are discussed considering the characteristics of the generated layers on the work-piece surface.  相似文献   

15.
电火花深小孔加工的实验研究   总被引:2,自引:0,他引:2  
采用不同旋转速度的电极进行电火花深小孔加工,通过采集加工时间数据,得到多条加工曲线.分析曲线结果表明,在特定转速范围内加工效率最高,低于或者高于这个转速,加工效率都会下降.利用流体力学和边界层理论可分析得出:电极转速太慢,能转化为极间液体的机械动能太小;而转速太快,靠近孔内壁的部分液体则处于相对静止的状态.这两种情况都会使极间液体的动力稳定性变差,将导致加工效率的下降.  相似文献   

16.
应用田口-灰关联法对Inconel 718微放电铣削多重质量特性如电极消耗率、材料去除率和扩口量进行最佳化,分析放电电流、脉冲时间、休止时间和极间间隙对加工Inconel 718之电极消耗率、材料去除率和扩口量的影响。实验结果表明,以最佳微放电铣削参数进行加工,其电极消耗率由5.6×10-9mm3/min降低到5.2×10-9mm3/min,材料去除率由0.47×10-8mm3/min增加到1.68×10-8mm3/min,扩口量由1.27μm降低到1.19μm。研究结果显示,应用田口-灰关联法,可以改善微放电铣削多重质量特性。  相似文献   

17.
通过对电火花成型加工放电蚀除规律的分析,提出了一种符合实际应用的控制策略,在粗加工情况下,以控制间隙电压稳定为主要目标,加工位移作为观测量;在精加工情况下,只要选取合适的分析周期,使在分析周期内的加工位移小于工件的加工精度,则仍以控制间隙电压稳定为主要目标,加工位移作为观测量,当加工位移与理想位移最接近时,停止加工。采用上述控制方式有效地避免了由于间隙电压与加工位移之间的耦合关系而导致的控制系统复杂性。该系统软件结构简单、实用,具有很强的工程应用价值,通过与传统控制方法的运行结果进行对比,结果表明机床的加工效率显著提高。  相似文献   

18.
This study investigates the influence of the machining characteristics on pure titanium metals using an electrical discharge machining (EDM) with the addition of urea into distilled water. Additionally, the effects of urea addition on surface modification are also discussed. In the experiments, machining parameters such as the dielectric type, peak current and pulse duration were changed to explore their effects on machining performance, including the material removal rate, electrode wear rate and surface roughness. Moreover, the elemental distribution of nitrogen on the machined surface was qualitatively determined by EPMA to assess the effects on surface modification. Micro hardness and wear resistance tests were performed to evaluate the effects of the reinforced surface.Experimental results indicate that the nitrogen element decomposed from the dielectric that contained urea, migrated to the work piece, forming a TiN hard layer, resulting in good wear resistance of the machined surface after EDM.  相似文献   

19.
The study investigated the feasibility of modifying the surface of Al–Zn–Mg alloy by a combined process of electric discharge machining (EDM) with ball burnish machining (BBM). A novel process that integrates EDM and BBM is also developed to conduct experiments on an electric discharge machine. Machining parameters of the combined process, including machining polarity, peak current, power supply voltage, and the protruding of ZrO2, are chosen to determine their effects on material removal rate, surface roughness and the improvement ratio of surface roughness. In addition, the extent to which the combined process affects surface modification is also evaluated by microhardness and corrosion resistance tests. Experimental results indicate that the combined process of EDM with BBM can effectively improve the surface roughness to obtain a fine-finishing and flat surface. The micropores and cracks caused from EDM are eliminated during the process as well. Furthermore, such a process can reinforce and increase the corrosion resistance of the machined surface after machining.  相似文献   

20.
The wire electrical discharge machining (EDM) of cross-section with minimum thickness and compliant mechanisms is studied. Effects of EDM process parameters, particularly the spark cycle time and spark on-time on thin cross-section cutting of Nd–Fe–B magnetic material, carbon bipolar plate, and titanium are investigated. An envelope of feasible wire EDM process parameters is generated for the commercially pure titanium. The application of such envelope to select suitable EDM process parameters for micro feature generation is demonstrated. Scanning electron microscopy (SEM) analysis of EDM surface, subsurface, and debris are presented. SEM observations lead to a hypothesis based on the thermal and electrostatic stress induced fracture to explain the limiting factor for wire EDM cutting of thin-sections. Applications of the thin cross-section EDM cutting for manufacture of compliant mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号