首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A FEM model for a failed industrial example of roll forging was established to analyze the generation mechanisms of the mismatch of size and shape of two spring board.To demonstrate the formulation of these defects,the bites condition and contact status between rectangular groove and workpiece during rolling the first and second spring boards were analyzed.Then,a new oval-diamond groove combining oval groove and diamond groove was presented to eliminate these defects.By analyzing field variables under the same deformation degree,the larger friction can be obtained on the contact surface of workpiece and the oval-diamond groove.The physical experiment validates that the oval-diamond groove can eliminate these defects effectively,and the size of part is in good agreement with design requirement.  相似文献   

2.
An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics, but also the structural performance. Employing the main stress trajectories as the representation of force flows on a free-form surface, an automatic grid generation approach is proposed for the architectural design. The algorithm automatically plots the main stress trajectories on a 3D free-form surface, and adopts a modified advancing front meshing technique to generate the structural grid. Based on the proposed algorithm, an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure. The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach. Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.  相似文献   

3.
Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming and solid state sintering.The wick could be divided into two parts for liquid capillary pumping flow:groove sintered zone and uniform sintered zone.Both of the thermal resistance network model and the maximum heat transfer capability model of GSHP were built.Compared with the theoretical values,the heat transfer limit and thermal resistance of GSHP were measured from three aspects:copper powder size,wick thickness and number of micro grooves.The results show that the wick thickness has the greatest effect on the thermal resistance of GSHP while the copper powder size has the most important influence on the heat transfer limit.Given certain copper powder size and wick thickness,the thermal resistance of GSHP can be the lowest when micro-groove number is about 55.  相似文献   

4.
Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.  相似文献   

5.
Switching expansion reduction (SER) uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics. A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built. The mathematical model considers heat exchanges, source air pressure and temperature, environmental temperatures and heat transfer coefficients variations. In addition, the compensation for real gas effect is used in the model building. The comparison between experiments and simulations of SER indicates that, to compensate the real gas effect in high pressure discharging process, the thermal capacity of air supply container in simulation should be less than the actual value. The higher the pressure range, the greater the deviation. Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s, which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.  相似文献   

6.
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot’s classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.  相似文献   

7.
Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.  相似文献   

8.
Coatings containing Fe-Si particles were electrodeposited on 3.0wt% Si steel sheets under magnetic fields. The effects of magnetic flux density (MFD), electrode arrangement and current density on the surface morphology, the silicon content in the coatings and the cathode current efficiency were investigated. When a magnetic field was applied parallel to the current and when the MFD was less than 0.5 T, numerous needle-like structures appeared on the coating surface. With increasing MFD, the needle-like structures weakened and were transformed into dome-shaped structures. Meanwhile, compared to results obtained in the absence of a magnetic field, the silicon content in the coatings significantly increased as the MFD was increased for all of the samples obtained using a vertical electrode system. However, in the case of an aclinic electrode system, the silicon content decreased. Furthermore, the cathode current efficiency was considerably diminished when a magnetic field was applied. A possible mechanism for these phenomena was discussed.  相似文献   

9.
Abstract: Two-tier heterogeneous networks (HetNets), where the current cellular networks, i.e., macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. The interference management and access control for open and closed femtocells in two-tier HetNets were focused. The contributions consist of two parts. Firstly, in order to reduce the uplink interference caused by MUEs (macrocell user equipments) at closed femtocells, an incentive mechanism to implement interference mitigation was proposed. It encourages femtoeells that work with closed-subscriber-group (CSG) to allow the interfering MUEs access in but only via uplink, which can reduce the interference significantly and also benefit the marco-tier. The interference issue was then studied in open-subscriber-group (OSG) femtocells from the perspective of handover and mobility prediction. Inbound handover provides an alternative solution for open femtocells when interference turns up, while this accompanies with PCI (physical cell identity) confusion during inbound handover. To reduce the PCI confusion, a dynamic PCI allocation scheme was proposed, by which the high handin femtocells have the dedicated PCI while the others share the reuse PCIs. A Markov chain based mobility prediction algorithm was designed to decide whether the femtoeell status is with high handover requests. Numerical analysis reveals that the UL interference is managed well for the CSG femtocell and the PCI confusion issue is mitigated greatly in OSG femtocell compared to the conventional approaches.  相似文献   

10.
Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.  相似文献   

11.
Specimens of Pb1-1.5xLax(Zr0.53 Ti0.47)1-y-zFeyNb2O3 (x = 0, 0.004, 0.008, 0.012, and 0.016, y = z = 0.01) (PZTFN) ceramics were synthesized by a semi-wet route. In the present study, the effect of La doping was investigated on the structural, microstructural, dielectric, piezoelectric, and ferroelectric properties of the ceramics. The results show that, the tetragonal (space group P4mm) and rhombohedral (space group R3c) phases are observed to coexist in the sample at x = 0.012. Microstructural investigations of all the samples reveal that La doping inhibits grain growth. Doping of La into PZTFN improves the dielectric, ferroelectric, and piezoelectric properties of the ceramics. The hys- teresis loops of all specimens exhibit nonlinear behavior. The dielectric, piezoelectric and ferroelectric properties show a maximum response atx 〉 0.012, which corresponds to the morphotropic phase boundary (MPB).  相似文献   

12.
The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (Cs) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (Ls). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO (αCaO), with no deterioration of Cs compared with conventional desulfurization slag. The measured Ls between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.  相似文献   

13.
Abstract: We performed fluidized bed coating ofAl-based nanoeomposite powder-binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating process efficiency and coating characteristics were investigated. The efficiency decreased from 52% to 49% as the processing time increased from 15 to 20 min. However, the amount and thickness of the coating also increased as the processing time and amount of the binder were increased. The addition of nanoparticles to the system decreased the thickness of the coating from 222 to 207 μm when polyvinyl alcohol (PVA) was used as a binder. The suspension containing 3wt% R-4410 binder exhibited the greatest efficiency of 60%.  相似文献   

14.
Ternary TiO2/WO3/graphene (TWG) nanocomposites were prepared by a facile salt-ultrasonic assisted hydrothermal method. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption--desorption. Both anatase TiO2 and orthorhombic WO3 formed in the nanocomposites, along with a highly disordered overlay of individual graphene nanosheets. Polyhedral and spherical TiO/and WO3 nanoparticles of uniform size 10-30 nm were densely anchored to the graphene sheets. The maximum specific surface area of the products was 144.59 m2·g^-1. The products showed clear abilities for the removal of Rhodamine B in the absence of illumination. Furthermore, the adsorption activity of the products exhibited only a slight decrease after three successive cycles. The results demonstrate that the ternary nanocomposites could be used as a high-efficiency adsorbent for the removal of environmental contaminants.  相似文献   

15.
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.  相似文献   

16.
Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive precursors were used for all of the methods, and all of the films were annealed at 300℃ in an oven (ambient conditions). After this step, the optical and structural properties of the films produced by using the three different methods were compared. The structures of the films were analyzed by X-ray diffTaction (XRD). The optical properties are investigated using the ultraviolet-visible (UV-VIS) spectroscopic technique. The film thickness was measured via atomic force microscopy (AFM) in the tapping mode. The surface properties and elemental ratios of the films were investigated and measured by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). The lowest transmittance and the highest reflectance values were observed for the films produced using the SILAR method. In addition, the most intense characteristic XRD peak was observed in the diffraction pattern of the film produced using the SILAR method, and the greatest thickness and average grain size were calculated for the film produced using the SILAR method. The films produced using SILAR method contained fewer cracks than those produced using the other methods. In conclusion, the SILAR method was observed to be the best method for the production of HOTFs.  相似文献   

17.
The effect of substrate doping on the threshold voltages of buried channel pMOSFET based on strained-SiGe technology was studied. By physically deriving the models of the threshold voltages, it is found that the layer which inversely occurs first is substrate doping dependent, giving explanation for the variation of plateau observed in theC-V characteristics of this device, as the doping concentration increases. The threshold voltages obtained from the proposed model are-1.2805 V for buried channel and-2.9358 V for surface channel at a lightly doping case, and-3.41 V for surface channel at a heavily doping case, which agrees well with the experimental results. Also, the variations of the threshold voltages with several device parameters are discussed, which provides valuable reference to the designers of strained-SiGe devices.  相似文献   

18.
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.  相似文献   

19.
In the modeling of microsegregation, the partition coefficient is usually calculated using data from the equilibrium phase diagrams. The aim of this study was to experimentally and theoretically analyze the partition coefficient in binary aluminum--copper alloys. The sam- ples were analyzed by differential thermal analysis (DTA), which were melted and quenched from different temperatures during solidifica- tion. The mass fraction and composition of phases were measured by image processing and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) unit. These data were used to calculate as the experimental partition coefficients with four different methods. The experimental and equilibrium partition coefficients were used to model the concentration profile in the primary phase. The modeling results show that the profiles calculated by the experimental partition coefficients are more consistent with the experi- mental profiles, compared to those calculated using the equilibrium partition coefficients.  相似文献   

20.
In order to improve the bonding strength between piston alloys and cast iron ring of aluminum piston with reinforced cast iron ring, the different methods of the surface treatments (shot blasting and sand blasting) to the cast iron ring are experimented. The optical micrograph shows that an intermetallic layer and a ligulate shaped structure are formed between piston alloys and cast iron base ring. After sand blasting treatment, the ring surface is non-metal shiny, matte-like and has no obvious pits. The intermetallic layer thickness formed between piston alloys and cast iron is thinner and more equally distributed after sand blasting to the ring. The content of the graphite distributed the interfacial zone after the shot blasting treatment is little. With the increase of time by sand blasting, the hardness starts to slightly descend. The bonding strength of the sample by sand blasting is obviously higher than that by shot blasting and increases from 9.32 MPa to 19.53 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号